Metamath Proof Explorer


Theorem uhgr0

Description: The null graph represented by an empty set is a hypergraph. (Contributed by AV, 9-Oct-2020)

Ref Expression
Assertion uhgr0
|- (/) e. UHGraph

Proof

Step Hyp Ref Expression
1 f0
 |-  (/) : (/) --> (/)
2 dm0
 |-  dom (/) = (/)
3 pw0
 |-  ~P (/) = { (/) }
4 3 difeq1i
 |-  ( ~P (/) \ { (/) } ) = ( { (/) } \ { (/) } )
5 difid
 |-  ( { (/) } \ { (/) } ) = (/)
6 4 5 eqtri
 |-  ( ~P (/) \ { (/) } ) = (/)
7 2 6 feq23i
 |-  ( (/) : dom (/) --> ( ~P (/) \ { (/) } ) <-> (/) : (/) --> (/) )
8 1 7 mpbir
 |-  (/) : dom (/) --> ( ~P (/) \ { (/) } )
9 0ex
 |-  (/) e. _V
10 vtxval0
 |-  ( Vtx ` (/) ) = (/)
11 10 eqcomi
 |-  (/) = ( Vtx ` (/) )
12 iedgval0
 |-  ( iEdg ` (/) ) = (/)
13 12 eqcomi
 |-  (/) = ( iEdg ` (/) )
14 11 13 isuhgr
 |-  ( (/) e. _V -> ( (/) e. UHGraph <-> (/) : dom (/) --> ( ~P (/) \ { (/) } ) ) )
15 9 14 ax-mp
 |-  ( (/) e. UHGraph <-> (/) : dom (/) --> ( ~P (/) \ { (/) } ) )
16 8 15 mpbir
 |-  (/) e. UHGraph