| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgr0v0e.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
uhgr0v0e.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
1 2
|
uhgr0v0e |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = ∅ ) → 𝐸 = ∅ ) |
| 4 |
3
|
ex |
⊢ ( 𝐺 ∈ UHGraph → ( 𝑉 = ∅ → 𝐸 = ∅ ) ) |
| 5 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 6 |
|
hasheq0 |
⊢ ( 𝑉 ∈ V → ( ( ♯ ‘ 𝑉 ) = 0 ↔ 𝑉 = ∅ ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( ( ♯ ‘ 𝑉 ) = 0 ↔ 𝑉 = ∅ ) |
| 8 |
2
|
fvexi |
⊢ 𝐸 ∈ V |
| 9 |
|
hasheq0 |
⊢ ( 𝐸 ∈ V → ( ( ♯ ‘ 𝐸 ) = 0 ↔ 𝐸 = ∅ ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( ( ♯ ‘ 𝐸 ) = 0 ↔ 𝐸 = ∅ ) |
| 11 |
4 7 10
|
3imtr4g |
⊢ ( 𝐺 ∈ UHGraph → ( ( ♯ ‘ 𝑉 ) = 0 → ( ♯ ‘ 𝐸 ) = 0 ) ) |
| 12 |
11
|
imp |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( ♯ ‘ 𝐸 ) = 0 ) |