| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 2 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 3 |
1 2
|
uhgr0vsize0 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 0 ) → ( ♯ ‘ ( Edg ‘ 𝐺 ) ) = 0 ) |
| 4 |
|
fvex |
⊢ ( Edg ‘ 𝐺 ) ∈ V |
| 5 |
|
hasheq0 |
⊢ ( ( Edg ‘ 𝐺 ) ∈ V → ( ( ♯ ‘ ( Edg ‘ 𝐺 ) ) = 0 ↔ ( Edg ‘ 𝐺 ) = ∅ ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( ( ♯ ‘ ( Edg ‘ 𝐺 ) ) = 0 ↔ ( Edg ‘ 𝐺 ) = ∅ ) |
| 7 |
|
0fi |
⊢ ∅ ∈ Fin |
| 8 |
|
eleq1 |
⊢ ( ( Edg ‘ 𝐺 ) = ∅ → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ ∅ ∈ Fin ) ) |
| 9 |
7 8
|
mpbiri |
⊢ ( ( Edg ‘ 𝐺 ) = ∅ → ( Edg ‘ 𝐺 ) ∈ Fin ) |
| 10 |
6 9
|
sylbi |
⊢ ( ( ♯ ‘ ( Edg ‘ 𝐺 ) ) = 0 → ( Edg ‘ 𝐺 ) ∈ Fin ) |
| 11 |
3 10
|
syl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 0 ) → ( Edg ‘ 𝐺 ) ∈ Fin ) |