| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 2 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 3 |
1 2
|
uhgr0vsize0 |
|- ( ( G e. UHGraph /\ ( # ` ( Vtx ` G ) ) = 0 ) -> ( # ` ( Edg ` G ) ) = 0 ) |
| 4 |
|
fvex |
|- ( Edg ` G ) e. _V |
| 5 |
|
hasheq0 |
|- ( ( Edg ` G ) e. _V -> ( ( # ` ( Edg ` G ) ) = 0 <-> ( Edg ` G ) = (/) ) ) |
| 6 |
4 5
|
ax-mp |
|- ( ( # ` ( Edg ` G ) ) = 0 <-> ( Edg ` G ) = (/) ) |
| 7 |
|
0fi |
|- (/) e. Fin |
| 8 |
|
eleq1 |
|- ( ( Edg ` G ) = (/) -> ( ( Edg ` G ) e. Fin <-> (/) e. Fin ) ) |
| 9 |
7 8
|
mpbiri |
|- ( ( Edg ` G ) = (/) -> ( Edg ` G ) e. Fin ) |
| 10 |
6 9
|
sylbi |
|- ( ( # ` ( Edg ` G ) ) = 0 -> ( Edg ` G ) e. Fin ) |
| 11 |
3 10
|
syl |
|- ( ( G e. UHGraph /\ ( # ` ( Vtx ` G ) ) = 0 ) -> ( Edg ` G ) e. Fin ) |