| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgr0v0e.v |
|- V = ( Vtx ` G ) |
| 2 |
|
uhgr0v0e.e |
|- E = ( Edg ` G ) |
| 3 |
1 2
|
uhgr0v0e |
|- ( ( G e. UHGraph /\ V = (/) ) -> E = (/) ) |
| 4 |
3
|
ex |
|- ( G e. UHGraph -> ( V = (/) -> E = (/) ) ) |
| 5 |
1
|
fvexi |
|- V e. _V |
| 6 |
|
hasheq0 |
|- ( V e. _V -> ( ( # ` V ) = 0 <-> V = (/) ) ) |
| 7 |
5 6
|
ax-mp |
|- ( ( # ` V ) = 0 <-> V = (/) ) |
| 8 |
2
|
fvexi |
|- E e. _V |
| 9 |
|
hasheq0 |
|- ( E e. _V -> ( ( # ` E ) = 0 <-> E = (/) ) ) |
| 10 |
8 9
|
ax-mp |
|- ( ( # ` E ) = 0 <-> E = (/) ) |
| 11 |
4 7 10
|
3imtr4g |
|- ( G e. UHGraph -> ( ( # ` V ) = 0 -> ( # ` E ) = 0 ) ) |
| 12 |
11
|
imp |
|- ( ( G e. UHGraph /\ ( # ` V ) = 0 ) -> ( # ` E ) = 0 ) |