Metamath Proof Explorer


Theorem uniwun

Description: Every set is contained in a weak universe. This is the analogue of grothtsk for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk . (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion uniwun WUni = V

Proof

Step Hyp Ref Expression
1 eqv ( WUni = V ↔ ∀ 𝑥 𝑥 WUni )
2 snex { 𝑥 } ∈ V
3 wunex ( { 𝑥 } ∈ V → ∃ 𝑢 ∈ WUni { 𝑥 } ⊆ 𝑢 )
4 2 3 ax-mp 𝑢 ∈ WUni { 𝑥 } ⊆ 𝑢
5 eluni2 ( 𝑥 WUni ↔ ∃ 𝑢 ∈ WUni 𝑥𝑢 )
6 vex 𝑥 ∈ V
7 6 snss ( 𝑥𝑢 ↔ { 𝑥 } ⊆ 𝑢 )
8 7 rexbii ( ∃ 𝑢 ∈ WUni 𝑥𝑢 ↔ ∃ 𝑢 ∈ WUni { 𝑥 } ⊆ 𝑢 )
9 5 8 bitri ( 𝑥 WUni ↔ ∃ 𝑢 ∈ WUni { 𝑥 } ⊆ 𝑢 )
10 4 9 mpbir 𝑥 WUni
11 1 10 mpgbir WUni = V