Step |
Hyp |
Ref |
Expression |
1 |
|
df-tr |
⊢ ( Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴 ) |
2 |
|
ssralv |
⊢ ( ∪ 𝐴 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ) ) |
3 |
1 2
|
sylbi |
⊢ ( Tr 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ) ) |
4 |
|
elequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
5 |
|
elequ2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
6 |
4 5
|
bitrd |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
7 |
6
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦 ) ) |
8 |
7
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀ 𝑦 ∈ ∪ 𝐴 ¬ 𝑦 ∈ 𝑦 ) |
9 |
|
untuni |
⊢ ( ∀ 𝑦 ∈ ∪ 𝐴 ¬ 𝑦 ∈ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 ) |
10 |
8 9
|
bitri |
⊢ ( ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 ) |
11 |
3 10
|
syl6ib |
⊢ ( Tr 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 ) ) |
12 |
|
untelirr |
⊢ ( ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑥 ) |
13 |
12
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 ) |
14 |
11 13
|
impbid1 |
⊢ ( Tr 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 ) ) |