Metamath Proof Explorer


Theorem untangtr

Description: A transitive class is untangled iff its elements are. (Contributed by Scott Fenton, 7-Mar-2011)

Ref Expression
Assertion untangtr ( Tr 𝐴 → ( ∀ 𝑥𝐴 ¬ 𝑥𝑥 ↔ ∀ 𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦 ) )

Proof

Step Hyp Ref Expression
1 df-tr ( Tr 𝐴 𝐴𝐴 )
2 ssralv ( 𝐴𝐴 → ( ∀ 𝑥𝐴 ¬ 𝑥𝑥 → ∀ 𝑥 𝐴 ¬ 𝑥𝑥 ) )
3 1 2 sylbi ( Tr 𝐴 → ( ∀ 𝑥𝐴 ¬ 𝑥𝑥 → ∀ 𝑥 𝐴 ¬ 𝑥𝑥 ) )
4 elequ1 ( 𝑥 = 𝑦 → ( 𝑥𝑥𝑦𝑥 ) )
5 elequ2 ( 𝑥 = 𝑦 → ( 𝑦𝑥𝑦𝑦 ) )
6 4 5 bitrd ( 𝑥 = 𝑦 → ( 𝑥𝑥𝑦𝑦 ) )
7 6 notbid ( 𝑥 = 𝑦 → ( ¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦 ) )
8 7 cbvralvw ( ∀ 𝑥 𝐴 ¬ 𝑥𝑥 ↔ ∀ 𝑦 𝐴 ¬ 𝑦𝑦 )
9 untuni ( ∀ 𝑦 𝐴 ¬ 𝑦𝑦 ↔ ∀ 𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦 )
10 8 9 bitri ( ∀ 𝑥 𝐴 ¬ 𝑥𝑥 ↔ ∀ 𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦 )
11 3 10 syl6ib ( Tr 𝐴 → ( ∀ 𝑥𝐴 ¬ 𝑥𝑥 → ∀ 𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦 ) )
12 untelirr ( ∀ 𝑦𝑥 ¬ 𝑦𝑦 → ¬ 𝑥𝑥 )
13 12 ralimi ( ∀ 𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦 → ∀ 𝑥𝐴 ¬ 𝑥𝑥 )
14 11 13 impbid1 ( Tr 𝐴 → ( ∀ 𝑥𝐴 ¬ 𝑥𝑥 ↔ ∀ 𝑥𝐴𝑦𝑥 ¬ 𝑦𝑦 ) )