| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r19.23v | ⊢ ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  →  ¬  𝑥  ∈  𝑥 )  ↔  ( ∃ 𝑦  ∈  𝐴 𝑥  ∈  𝑦  →  ¬  𝑥  ∈  𝑥 ) ) | 
						
							| 2 | 1 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  →  ¬  𝑥  ∈  𝑥 )  ↔  ∀ 𝑥 ( ∃ 𝑦  ∈  𝐴 𝑥  ∈  𝑦  →  ¬  𝑥  ∈  𝑥 ) ) | 
						
							| 3 |  | ralcom4 | ⊢ ( ∀ 𝑦  ∈  𝐴 ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ¬  𝑥  ∈  𝑥 )  ↔  ∀ 𝑥 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  →  ¬  𝑥  ∈  𝑥 ) ) | 
						
							| 4 |  | eluni2 | ⊢ ( 𝑥  ∈  ∪  𝐴  ↔  ∃ 𝑦  ∈  𝐴 𝑥  ∈  𝑦 ) | 
						
							| 5 | 4 | imbi1i | ⊢ ( ( 𝑥  ∈  ∪  𝐴  →  ¬  𝑥  ∈  𝑥 )  ↔  ( ∃ 𝑦  ∈  𝐴 𝑥  ∈  𝑦  →  ¬  𝑥  ∈  𝑥 ) ) | 
						
							| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  ∪  𝐴  →  ¬  𝑥  ∈  𝑥 )  ↔  ∀ 𝑥 ( ∃ 𝑦  ∈  𝐴 𝑥  ∈  𝑦  →  ¬  𝑥  ∈  𝑥 ) ) | 
						
							| 7 | 2 3 6 | 3bitr4ri | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  ∪  𝐴  →  ¬  𝑥  ∈  𝑥 )  ↔  ∀ 𝑦  ∈  𝐴 ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ¬  𝑥  ∈  𝑥 ) ) | 
						
							| 8 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  ∪  𝐴 ¬  𝑥  ∈  𝑥  ↔  ∀ 𝑥 ( 𝑥  ∈  ∪  𝐴  →  ¬  𝑥  ∈  𝑥 ) ) | 
						
							| 9 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝑦 ¬  𝑥  ∈  𝑥  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ¬  𝑥  ∈  𝑥 ) ) | 
						
							| 10 | 9 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝐴 ∀ 𝑥  ∈  𝑦 ¬  𝑥  ∈  𝑥  ↔  ∀ 𝑦  ∈  𝐴 ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ¬  𝑥  ∈  𝑥 ) ) | 
						
							| 11 | 7 8 10 | 3bitr4i | ⊢ ( ∀ 𝑥  ∈  ∪  𝐴 ¬  𝑥  ∈  𝑥  ↔  ∀ 𝑦  ∈  𝐴 ∀ 𝑥  ∈  𝑦 ¬  𝑥  ∈  𝑥 ) |