Step |
Hyp |
Ref |
Expression |
1 |
|
untsucf.1 |
⊢ Ⅎ 𝑦 𝐴 |
2 |
|
nfv |
⊢ Ⅎ 𝑦 ¬ 𝑥 ∈ 𝑥 |
3 |
1 2
|
nfralw |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 |
4 |
|
vex |
⊢ 𝑦 ∈ V |
5 |
4
|
elsuc |
⊢ ( 𝑦 ∈ suc 𝐴 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
6 |
|
elequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
7 |
|
elequ2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
8 |
6 7
|
bitrd |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
9 |
8
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦 ) ) |
10 |
9
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑦 ) ) |
11 |
|
untelirr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ¬ 𝐴 ∈ 𝐴 ) |
12 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ) |
13 |
|
eleq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝐴 ) ) |
14 |
12 13
|
bitrd |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑦 ↔ 𝐴 ∈ 𝐴 ) ) |
15 |
14
|
notbid |
⊢ ( 𝑦 = 𝐴 → ( ¬ 𝑦 ∈ 𝑦 ↔ ¬ 𝐴 ∈ 𝐴 ) ) |
16 |
11 15
|
syl5ibrcom |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ( 𝑦 = 𝐴 → ¬ 𝑦 ∈ 𝑦 ) ) |
17 |
10 16
|
jaod |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) → ¬ 𝑦 ∈ 𝑦 ) ) |
18 |
5 17
|
syl5bi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ( 𝑦 ∈ suc 𝐴 → ¬ 𝑦 ∈ 𝑦 ) ) |
19 |
3 18
|
ralrimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀ 𝑦 ∈ suc 𝐴 ¬ 𝑦 ∈ 𝑦 ) |