| Step |
Hyp |
Ref |
Expression |
| 1 |
|
untsucf.1 |
⊢ Ⅎ 𝑦 𝐴 |
| 2 |
|
nfv |
⊢ Ⅎ 𝑦 ¬ 𝑥 ∈ 𝑥 |
| 3 |
1 2
|
nfralw |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 |
| 4 |
|
vex |
⊢ 𝑦 ∈ V |
| 5 |
4
|
elsuc |
⊢ ( 𝑦 ∈ suc 𝐴 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
| 6 |
|
elequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
| 7 |
|
elequ2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
| 8 |
6 7
|
bitrd |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
| 9 |
8
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦 ) ) |
| 10 |
9
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑦 ) ) |
| 11 |
|
untelirr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ¬ 𝐴 ∈ 𝐴 ) |
| 12 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ) |
| 13 |
|
eleq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝐴 ) ) |
| 14 |
12 13
|
bitrd |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑦 ↔ 𝐴 ∈ 𝐴 ) ) |
| 15 |
14
|
notbid |
⊢ ( 𝑦 = 𝐴 → ( ¬ 𝑦 ∈ 𝑦 ↔ ¬ 𝐴 ∈ 𝐴 ) ) |
| 16 |
11 15
|
syl5ibrcom |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ( 𝑦 = 𝐴 → ¬ 𝑦 ∈ 𝑦 ) ) |
| 17 |
10 16
|
jaod |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) → ¬ 𝑦 ∈ 𝑦 ) ) |
| 18 |
5 17
|
biimtrid |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ( 𝑦 ∈ suc 𝐴 → ¬ 𝑦 ∈ 𝑦 ) ) |
| 19 |
3 18
|
ralrimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀ 𝑦 ∈ suc 𝐴 ¬ 𝑦 ∈ 𝑦 ) |