Metamath Proof Explorer


Theorem untsucf

Description: If a class is untangled, then so is its successor. (Contributed by Scott Fenton, 28-Feb-2011) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypothesis untsucf.1 𝑦 𝐴
Assertion untsucf ( ∀ 𝑥𝐴 ¬ 𝑥𝑥 → ∀ 𝑦 ∈ suc 𝐴 ¬ 𝑦𝑦 )

Proof

Step Hyp Ref Expression
1 untsucf.1 𝑦 𝐴
2 nfv 𝑦 ¬ 𝑥𝑥
3 1 2 nfralw 𝑦𝑥𝐴 ¬ 𝑥𝑥
4 vex 𝑦 ∈ V
5 4 elsuc ( 𝑦 ∈ suc 𝐴 ↔ ( 𝑦𝐴𝑦 = 𝐴 ) )
6 elequ1 ( 𝑥 = 𝑦 → ( 𝑥𝑥𝑦𝑥 ) )
7 elequ2 ( 𝑥 = 𝑦 → ( 𝑦𝑥𝑦𝑦 ) )
8 6 7 bitrd ( 𝑥 = 𝑦 → ( 𝑥𝑥𝑦𝑦 ) )
9 8 notbid ( 𝑥 = 𝑦 → ( ¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦 ) )
10 9 rspccv ( ∀ 𝑥𝐴 ¬ 𝑥𝑥 → ( 𝑦𝐴 → ¬ 𝑦𝑦 ) )
11 untelirr ( ∀ 𝑥𝐴 ¬ 𝑥𝑥 → ¬ 𝐴𝐴 )
12 eleq1 ( 𝑦 = 𝐴 → ( 𝑦𝑦𝐴𝑦 ) )
13 eleq2 ( 𝑦 = 𝐴 → ( 𝐴𝑦𝐴𝐴 ) )
14 12 13 bitrd ( 𝑦 = 𝐴 → ( 𝑦𝑦𝐴𝐴 ) )
15 14 notbid ( 𝑦 = 𝐴 → ( ¬ 𝑦𝑦 ↔ ¬ 𝐴𝐴 ) )
16 11 15 syl5ibrcom ( ∀ 𝑥𝐴 ¬ 𝑥𝑥 → ( 𝑦 = 𝐴 → ¬ 𝑦𝑦 ) )
17 10 16 jaod ( ∀ 𝑥𝐴 ¬ 𝑥𝑥 → ( ( 𝑦𝐴𝑦 = 𝐴 ) → ¬ 𝑦𝑦 ) )
18 5 17 syl5bi ( ∀ 𝑥𝐴 ¬ 𝑥𝑥 → ( 𝑦 ∈ suc 𝐴 → ¬ 𝑦𝑦 ) )
19 3 18 ralrimi ( ∀ 𝑥𝐴 ¬ 𝑥𝑥 → ∀ 𝑦 ∈ suc 𝐴 ¬ 𝑦𝑦 )