Metamath Proof Explorer


Theorem untsucf

Description: If a class is untangled, then so is its successor. (Contributed by Scott Fenton, 28-Feb-2011) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypothesis untsucf.1 _yA
Assertion untsucf xA¬xxysucA¬yy

Proof

Step Hyp Ref Expression
1 untsucf.1 _yA
2 nfv y¬xx
3 1 2 nfralw yxA¬xx
4 vex yV
5 4 elsuc ysucAyAy=A
6 elequ1 x=yxxyx
7 elequ2 x=yyxyy
8 6 7 bitrd x=yxxyy
9 8 notbid x=y¬xx¬yy
10 9 rspccv xA¬xxyA¬yy
11 untelirr xA¬xx¬AA
12 eleq1 y=AyyAy
13 eleq2 y=AAyAA
14 12 13 bitrd y=AyyAA
15 14 notbid y=A¬yy¬AA
16 11 15 syl5ibrcom xA¬xxy=A¬yy
17 10 16 jaod xA¬xxyAy=A¬yy
18 5 17 biimtrid xA¬xxysucA¬yy
19 3 18 ralrimi xA¬xxysucA¬yy