Metamath Proof Explorer
		
		
		
		Description:  If there is an untangled element of a class, then the intersection of
       the class is untangled.  (Contributed by Scott Fenton, 1-Mar-2011)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | untint | ⊢  ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝑥 ¬  𝑦  ∈  𝑦  →  ∀ 𝑦  ∈  ∩  𝐴 ¬  𝑦  ∈  𝑦 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | intss1 | ⊢ ( 𝑥  ∈  𝐴  →  ∩  𝐴  ⊆  𝑥 ) | 
						
							| 2 |  | ssralv | ⊢ ( ∩  𝐴  ⊆  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ¬  𝑦  ∈  𝑦  →  ∀ 𝑦  ∈  ∩  𝐴 ¬  𝑦  ∈  𝑦 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑥  ∈  𝐴  →  ( ∀ 𝑦  ∈  𝑥 ¬  𝑦  ∈  𝑦  →  ∀ 𝑦  ∈  ∩  𝐴 ¬  𝑦  ∈  𝑦 ) ) | 
						
							| 4 | 3 | rexlimiv | ⊢ ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝑥 ¬  𝑦  ∈  𝑦  →  ∀ 𝑦  ∈  ∩  𝐴 ¬  𝑦  ∈  𝑦 ) |