Metamath Proof Explorer


Theorem efrunt

Description: If A is well-founded by _E , then it is untangled. (Contributed by Scott Fenton, 1-Mar-2011)

Ref Expression
Assertion efrunt ( E Fr 𝐴 → ∀ 𝑥𝐴 ¬ 𝑥𝑥 )

Proof

Step Hyp Ref Expression
1 frirr ( ( E Fr 𝐴𝑥𝐴 ) → ¬ 𝑥 E 𝑥 )
2 epel ( 𝑥 E 𝑥𝑥𝑥 )
3 1 2 sylnib ( ( E Fr 𝐴𝑥𝐴 ) → ¬ 𝑥𝑥 )
4 3 ralrimiva ( E Fr 𝐴 → ∀ 𝑥𝐴 ¬ 𝑥𝑥 )