Metamath Proof Explorer


Theorem upgr1eop

Description: A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1eop . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 10-Oct-2020)

Ref Expression
Assertion upgr1eop ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) → ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ∈ UPGraph )

Proof

Step Hyp Ref Expression
1 eqid ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ) = ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ )
2 simplr ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) → 𝐴𝑋 )
3 simprl ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) → 𝐵𝑉 )
4 simpl ( ( 𝑉𝑊𝐴𝑋 ) → 𝑉𝑊 )
5 snex { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ∈ V
6 5 a1i ( ( 𝐵𝑉𝐶𝑉 ) → { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ∈ V )
7 opvtxfv ( ( 𝑉𝑊 ∧ { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ∈ V ) → ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ) = 𝑉 )
8 4 6 7 syl2an ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) → ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ) = 𝑉 )
9 3 8 eleqtrrd ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) → 𝐵 ∈ ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ) )
10 simprr ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) → 𝐶𝑉 )
11 10 8 eleqtrrd ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) → 𝐶 ∈ ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ) )
12 opiedgfv ( ( 𝑉𝑊 ∧ { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ∈ V ) → ( iEdg ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ) = { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } )
13 4 6 12 syl2an ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) → ( iEdg ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ) = { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } )
14 1 2 9 11 13 upgr1e ( ( ( 𝑉𝑊𝐴𝑋 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) → ⟨ 𝑉 , { ⟨ 𝐴 , { 𝐵 , 𝐶 } ⟩ } ⟩ ∈ UPGraph )