| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgr1wlkd.p |
⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 |
| 2 |
|
upgr1wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 ”〉 |
| 3 |
|
upgr1wlkd.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
| 4 |
|
upgr1wlkd.y |
⊢ ( 𝜑 → 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) |
| 5 |
|
upgr1wlkd.j |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ) |
| 6 |
|
ssid |
⊢ { 𝑋 , 𝑌 } ⊆ { 𝑋 , 𝑌 } |
| 7 |
|
sseq2 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } → ( { 𝑋 , 𝑌 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) ↔ { 𝑋 , 𝑌 } ⊆ { 𝑋 , 𝑌 } ) ) |
| 8 |
7
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ) → ( { 𝑋 , 𝑌 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) ↔ { 𝑋 , 𝑌 } ⊆ { 𝑋 , 𝑌 } ) ) |
| 9 |
6 8
|
mpbiri |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ) → { 𝑋 , 𝑌 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) ) |
| 10 |
5 9
|
mpidan |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) ) |