Metamath Proof Explorer


Theorem upgr1wlkdlem2

Description: Lemma 2 for upgr1wlkd . (Contributed by AV, 22-Jan-2021)

Ref Expression
Hypotheses upgr1wlkd.p
|- P = <" X Y ">
upgr1wlkd.f
|- F = <" J ">
upgr1wlkd.x
|- ( ph -> X e. ( Vtx ` G ) )
upgr1wlkd.y
|- ( ph -> Y e. ( Vtx ` G ) )
upgr1wlkd.j
|- ( ph -> ( ( iEdg ` G ) ` J ) = { X , Y } )
Assertion upgr1wlkdlem2
|- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( ( iEdg ` G ) ` J ) )

Proof

Step Hyp Ref Expression
1 upgr1wlkd.p
 |-  P = <" X Y ">
2 upgr1wlkd.f
 |-  F = <" J ">
3 upgr1wlkd.x
 |-  ( ph -> X e. ( Vtx ` G ) )
4 upgr1wlkd.y
 |-  ( ph -> Y e. ( Vtx ` G ) )
5 upgr1wlkd.j
 |-  ( ph -> ( ( iEdg ` G ) ` J ) = { X , Y } )
6 ssid
 |-  { X , Y } C_ { X , Y }
7 sseq2
 |-  ( ( ( iEdg ` G ) ` J ) = { X , Y } -> ( { X , Y } C_ ( ( iEdg ` G ) ` J ) <-> { X , Y } C_ { X , Y } ) )
8 7 adantl
 |-  ( ( ( ph /\ X =/= Y ) /\ ( ( iEdg ` G ) ` J ) = { X , Y } ) -> ( { X , Y } C_ ( ( iEdg ` G ) ` J ) <-> { X , Y } C_ { X , Y } ) )
9 6 8 mpbiri
 |-  ( ( ( ph /\ X =/= Y ) /\ ( ( iEdg ` G ) ` J ) = { X , Y } ) -> { X , Y } C_ ( ( iEdg ` G ) ` J ) )
10 5 9 mpidan
 |-  ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( ( iEdg ` G ) ` J ) )