Description: In a simple graph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by AV, 18-Oct-2020) (Proof shortened by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ushgredgedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| ushgredgedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| ushgredgedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| ushgredgedg.a | ⊢ 𝐴 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } | ||
| ushgredgedg.b | ⊢ 𝐵 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } | ||
| ushgredgedg.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐼 ‘ 𝑥 ) ) | ||
| Assertion | usgredgedg | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ushgredgedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 2 | ushgredgedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | ushgredgedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 4 | ushgredgedg.a | ⊢ 𝐴 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } | |
| 5 | ushgredgedg.b | ⊢ 𝐵 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } | |
| 6 | ushgredgedg.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐼 ‘ 𝑥 ) ) | |
| 7 | usgruspgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USPGraph ) | |
| 8 | uspgrushgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USHGraph ) |
| 10 | 1 2 3 4 5 6 | ushgredgedg | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 11 | 9 10 | sylan | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |