Description: In a simple graph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by AV, 18-Oct-2020) (Proof shortened by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ushgredgedg.e | |- E = ( Edg ` G ) |
|
| ushgredgedg.i | |- I = ( iEdg ` G ) |
||
| ushgredgedg.v | |- V = ( Vtx ` G ) |
||
| ushgredgedg.a | |- A = { i e. dom I | N e. ( I ` i ) } |
||
| ushgredgedg.b | |- B = { e e. E | N e. e } |
||
| ushgredgedg.f | |- F = ( x e. A |-> ( I ` x ) ) |
||
| Assertion | usgredgedg | |- ( ( G e. USGraph /\ N e. V ) -> F : A -1-1-onto-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ushgredgedg.e | |- E = ( Edg ` G ) |
|
| 2 | ushgredgedg.i | |- I = ( iEdg ` G ) |
|
| 3 | ushgredgedg.v | |- V = ( Vtx ` G ) |
|
| 4 | ushgredgedg.a | |- A = { i e. dom I | N e. ( I ` i ) } |
|
| 5 | ushgredgedg.b | |- B = { e e. E | N e. e } |
|
| 6 | ushgredgedg.f | |- F = ( x e. A |-> ( I ` x ) ) |
|
| 7 | usgruspgr | |- ( G e. USGraph -> G e. USPGraph ) |
|
| 8 | uspgrushgr | |- ( G e. USPGraph -> G e. USHGraph ) |
|
| 9 | 7 8 | syl | |- ( G e. USGraph -> G e. USHGraph ) |
| 10 | 1 2 3 4 5 6 | ushgredgedg | |- ( ( G e. USHGraph /\ N e. V ) -> F : A -1-1-onto-> B ) |
| 11 | 9 10 | sylan | |- ( ( G e. USGraph /\ N e. V ) -> F : A -1-1-onto-> B ) |