Metamath Proof Explorer


Theorem usgredgedg

Description: In a simple graph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by AV, 18-Oct-2020) (Proof shortened by AV, 11-Dec-2020)

Ref Expression
Hypotheses ushgredgedg.e
|- E = ( Edg ` G )
ushgredgedg.i
|- I = ( iEdg ` G )
ushgredgedg.v
|- V = ( Vtx ` G )
ushgredgedg.a
|- A = { i e. dom I | N e. ( I ` i ) }
ushgredgedg.b
|- B = { e e. E | N e. e }
ushgredgedg.f
|- F = ( x e. A |-> ( I ` x ) )
Assertion usgredgedg
|- ( ( G e. USGraph /\ N e. V ) -> F : A -1-1-onto-> B )

Proof

Step Hyp Ref Expression
1 ushgredgedg.e
 |-  E = ( Edg ` G )
2 ushgredgedg.i
 |-  I = ( iEdg ` G )
3 ushgredgedg.v
 |-  V = ( Vtx ` G )
4 ushgredgedg.a
 |-  A = { i e. dom I | N e. ( I ` i ) }
5 ushgredgedg.b
 |-  B = { e e. E | N e. e }
6 ushgredgedg.f
 |-  F = ( x e. A |-> ( I ` x ) )
7 usgruspgr
 |-  ( G e. USGraph -> G e. USPGraph )
8 uspgrushgr
 |-  ( G e. USPGraph -> G e. USHGraph )
9 7 8 syl
 |-  ( G e. USGraph -> G e. USHGraph )
10 1 2 3 4 5 6 ushgredgedg
 |-  ( ( G e. USHGraph /\ N e. V ) -> F : A -1-1-onto-> B )
11 9 10 sylan
 |-  ( ( G e. USGraph /\ N e. V ) -> F : A -1-1-onto-> B )