| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ushgredgedgloop.e |
|- E = ( Edg ` G ) |
| 2 |
|
ushgredgedgloop.i |
|- I = ( iEdg ` G ) |
| 3 |
|
ushgredgedgloop.a |
|- A = { i e. dom I | ( I ` i ) = { N } } |
| 4 |
|
ushgredgedgloop.b |
|- B = { e e. E | e = { N } } |
| 5 |
|
ushgredgedgloop.f |
|- F = ( x e. A |-> ( I ` x ) ) |
| 6 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 7 |
6 2
|
ushgrf |
|- ( G e. USHGraph -> I : dom I -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 8 |
7
|
adantr |
|- ( ( G e. USHGraph /\ N e. V ) -> I : dom I -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 9 |
|
ssrab2 |
|- { i e. dom I | ( I ` i ) = { N } } C_ dom I |
| 10 |
|
f1ores |
|- ( ( I : dom I -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) /\ { i e. dom I | ( I ` i ) = { N } } C_ dom I ) -> ( I |` { i e. dom I | ( I ` i ) = { N } } ) : { i e. dom I | ( I ` i ) = { N } } -1-1-onto-> ( I " { i e. dom I | ( I ` i ) = { N } } ) ) |
| 11 |
8 9 10
|
sylancl |
|- ( ( G e. USHGraph /\ N e. V ) -> ( I |` { i e. dom I | ( I ` i ) = { N } } ) : { i e. dom I | ( I ` i ) = { N } } -1-1-onto-> ( I " { i e. dom I | ( I ` i ) = { N } } ) ) |
| 12 |
3
|
a1i |
|- ( ( G e. USHGraph /\ N e. V ) -> A = { i e. dom I | ( I ` i ) = { N } } ) |
| 13 |
|
eqidd |
|- ( ( ( G e. USHGraph /\ N e. V ) /\ x e. A ) -> ( I ` x ) = ( I ` x ) ) |
| 14 |
12 13
|
mpteq12dva |
|- ( ( G e. USHGraph /\ N e. V ) -> ( x e. A |-> ( I ` x ) ) = ( x e. { i e. dom I | ( I ` i ) = { N } } |-> ( I ` x ) ) ) |
| 15 |
5 14
|
eqtrid |
|- ( ( G e. USHGraph /\ N e. V ) -> F = ( x e. { i e. dom I | ( I ` i ) = { N } } |-> ( I ` x ) ) ) |
| 16 |
|
f1f |
|- ( I : dom I -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) -> I : dom I --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 17 |
7 16
|
syl |
|- ( G e. USHGraph -> I : dom I --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 18 |
9
|
a1i |
|- ( G e. USHGraph -> { i e. dom I | ( I ` i ) = { N } } C_ dom I ) |
| 19 |
17 18
|
feqresmpt |
|- ( G e. USHGraph -> ( I |` { i e. dom I | ( I ` i ) = { N } } ) = ( x e. { i e. dom I | ( I ` i ) = { N } } |-> ( I ` x ) ) ) |
| 20 |
19
|
adantr |
|- ( ( G e. USHGraph /\ N e. V ) -> ( I |` { i e. dom I | ( I ` i ) = { N } } ) = ( x e. { i e. dom I | ( I ` i ) = { N } } |-> ( I ` x ) ) ) |
| 21 |
15 20
|
eqtr4d |
|- ( ( G e. USHGraph /\ N e. V ) -> F = ( I |` { i e. dom I | ( I ` i ) = { N } } ) ) |
| 22 |
|
ushgruhgr |
|- ( G e. USHGraph -> G e. UHGraph ) |
| 23 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 24 |
23
|
uhgrfun |
|- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 25 |
22 24
|
syl |
|- ( G e. USHGraph -> Fun ( iEdg ` G ) ) |
| 26 |
2
|
funeqi |
|- ( Fun I <-> Fun ( iEdg ` G ) ) |
| 27 |
25 26
|
sylibr |
|- ( G e. USHGraph -> Fun I ) |
| 28 |
27
|
adantr |
|- ( ( G e. USHGraph /\ N e. V ) -> Fun I ) |
| 29 |
|
dfimafn |
|- ( ( Fun I /\ { i e. dom I | ( I ` i ) = { N } } C_ dom I ) -> ( I " { i e. dom I | ( I ` i ) = { N } } ) = { e | E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = e } ) |
| 30 |
28 9 29
|
sylancl |
|- ( ( G e. USHGraph /\ N e. V ) -> ( I " { i e. dom I | ( I ` i ) = { N } } ) = { e | E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = e } ) |
| 31 |
|
fveqeq2 |
|- ( i = j -> ( ( I ` i ) = { N } <-> ( I ` j ) = { N } ) ) |
| 32 |
31
|
elrab |
|- ( j e. { i e. dom I | ( I ` i ) = { N } } <-> ( j e. dom I /\ ( I ` j ) = { N } ) ) |
| 33 |
|
simpl |
|- ( ( j e. dom I /\ ( I ` j ) = { N } ) -> j e. dom I ) |
| 34 |
|
fvelrn |
|- ( ( Fun I /\ j e. dom I ) -> ( I ` j ) e. ran I ) |
| 35 |
2
|
eqcomi |
|- ( iEdg ` G ) = I |
| 36 |
35
|
rneqi |
|- ran ( iEdg ` G ) = ran I |
| 37 |
34 36
|
eleqtrrdi |
|- ( ( Fun I /\ j e. dom I ) -> ( I ` j ) e. ran ( iEdg ` G ) ) |
| 38 |
28 33 37
|
syl2an |
|- ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ ( I ` j ) = { N } ) ) -> ( I ` j ) e. ran ( iEdg ` G ) ) |
| 39 |
38
|
3adant3 |
|- ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ ( I ` j ) = { N } ) /\ ( I ` j ) = f ) -> ( I ` j ) e. ran ( iEdg ` G ) ) |
| 40 |
|
eleq1 |
|- ( f = ( I ` j ) -> ( f e. ran ( iEdg ` G ) <-> ( I ` j ) e. ran ( iEdg ` G ) ) ) |
| 41 |
40
|
eqcoms |
|- ( ( I ` j ) = f -> ( f e. ran ( iEdg ` G ) <-> ( I ` j ) e. ran ( iEdg ` G ) ) ) |
| 42 |
41
|
3ad2ant3 |
|- ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ ( I ` j ) = { N } ) /\ ( I ` j ) = f ) -> ( f e. ran ( iEdg ` G ) <-> ( I ` j ) e. ran ( iEdg ` G ) ) ) |
| 43 |
39 42
|
mpbird |
|- ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ ( I ` j ) = { N } ) /\ ( I ` j ) = f ) -> f e. ran ( iEdg ` G ) ) |
| 44 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 45 |
44
|
a1i |
|- ( G e. USHGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
| 46 |
1 45
|
eqtrid |
|- ( G e. USHGraph -> E = ran ( iEdg ` G ) ) |
| 47 |
46
|
eleq2d |
|- ( G e. USHGraph -> ( f e. E <-> f e. ran ( iEdg ` G ) ) ) |
| 48 |
47
|
adantr |
|- ( ( G e. USHGraph /\ N e. V ) -> ( f e. E <-> f e. ran ( iEdg ` G ) ) ) |
| 49 |
48
|
3ad2ant1 |
|- ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ ( I ` j ) = { N } ) /\ ( I ` j ) = f ) -> ( f e. E <-> f e. ran ( iEdg ` G ) ) ) |
| 50 |
43 49
|
mpbird |
|- ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ ( I ` j ) = { N } ) /\ ( I ` j ) = f ) -> f e. E ) |
| 51 |
|
eqeq1 |
|- ( ( I ` j ) = f -> ( ( I ` j ) = { N } <-> f = { N } ) ) |
| 52 |
51
|
biimpcd |
|- ( ( I ` j ) = { N } -> ( ( I ` j ) = f -> f = { N } ) ) |
| 53 |
52
|
adantl |
|- ( ( j e. dom I /\ ( I ` j ) = { N } ) -> ( ( I ` j ) = f -> f = { N } ) ) |
| 54 |
53
|
a1i |
|- ( ( G e. USHGraph /\ N e. V ) -> ( ( j e. dom I /\ ( I ` j ) = { N } ) -> ( ( I ` j ) = f -> f = { N } ) ) ) |
| 55 |
54
|
3imp |
|- ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ ( I ` j ) = { N } ) /\ ( I ` j ) = f ) -> f = { N } ) |
| 56 |
50 55
|
jca |
|- ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ ( I ` j ) = { N } ) /\ ( I ` j ) = f ) -> ( f e. E /\ f = { N } ) ) |
| 57 |
56
|
3exp |
|- ( ( G e. USHGraph /\ N e. V ) -> ( ( j e. dom I /\ ( I ` j ) = { N } ) -> ( ( I ` j ) = f -> ( f e. E /\ f = { N } ) ) ) ) |
| 58 |
32 57
|
biimtrid |
|- ( ( G e. USHGraph /\ N e. V ) -> ( j e. { i e. dom I | ( I ` i ) = { N } } -> ( ( I ` j ) = f -> ( f e. E /\ f = { N } ) ) ) ) |
| 59 |
58
|
rexlimdv |
|- ( ( G e. USHGraph /\ N e. V ) -> ( E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f -> ( f e. E /\ f = { N } ) ) ) |
| 60 |
25
|
funfnd |
|- ( G e. USHGraph -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
| 61 |
|
fvelrnb |
|- ( ( iEdg ` G ) Fn dom ( iEdg ` G ) -> ( f e. ran ( iEdg ` G ) <-> E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = f ) ) |
| 62 |
60 61
|
syl |
|- ( G e. USHGraph -> ( f e. ran ( iEdg ` G ) <-> E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = f ) ) |
| 63 |
35
|
dmeqi |
|- dom ( iEdg ` G ) = dom I |
| 64 |
63
|
eleq2i |
|- ( j e. dom ( iEdg ` G ) <-> j e. dom I ) |
| 65 |
64
|
biimpi |
|- ( j e. dom ( iEdg ` G ) -> j e. dom I ) |
| 66 |
65
|
adantr |
|- ( ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) -> j e. dom I ) |
| 67 |
66
|
adantl |
|- ( ( ( G e. USHGraph /\ f = { N } ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> j e. dom I ) |
| 68 |
35
|
fveq1i |
|- ( ( iEdg ` G ) ` j ) = ( I ` j ) |
| 69 |
68
|
eqeq2i |
|- ( f = ( ( iEdg ` G ) ` j ) <-> f = ( I ` j ) ) |
| 70 |
69
|
biimpi |
|- ( f = ( ( iEdg ` G ) ` j ) -> f = ( I ` j ) ) |
| 71 |
70
|
eqcoms |
|- ( ( ( iEdg ` G ) ` j ) = f -> f = ( I ` j ) ) |
| 72 |
71
|
eqeq1d |
|- ( ( ( iEdg ` G ) ` j ) = f -> ( f = { N } <-> ( I ` j ) = { N } ) ) |
| 73 |
72
|
biimpcd |
|- ( f = { N } -> ( ( ( iEdg ` G ) ` j ) = f -> ( I ` j ) = { N } ) ) |
| 74 |
73
|
adantl |
|- ( ( G e. USHGraph /\ f = { N } ) -> ( ( ( iEdg ` G ) ` j ) = f -> ( I ` j ) = { N } ) ) |
| 75 |
74
|
adantld |
|- ( ( G e. USHGraph /\ f = { N } ) -> ( ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) -> ( I ` j ) = { N } ) ) |
| 76 |
75
|
imp |
|- ( ( ( G e. USHGraph /\ f = { N } ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> ( I ` j ) = { N } ) |
| 77 |
67 76
|
jca |
|- ( ( ( G e. USHGraph /\ f = { N } ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> ( j e. dom I /\ ( I ` j ) = { N } ) ) |
| 78 |
77 32
|
sylibr |
|- ( ( ( G e. USHGraph /\ f = { N } ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> j e. { i e. dom I | ( I ` i ) = { N } } ) |
| 79 |
68
|
eqeq1i |
|- ( ( ( iEdg ` G ) ` j ) = f <-> ( I ` j ) = f ) |
| 80 |
79
|
biimpi |
|- ( ( ( iEdg ` G ) ` j ) = f -> ( I ` j ) = f ) |
| 81 |
80
|
adantl |
|- ( ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) -> ( I ` j ) = f ) |
| 82 |
81
|
adantl |
|- ( ( ( G e. USHGraph /\ f = { N } ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> ( I ` j ) = f ) |
| 83 |
78 82
|
jca |
|- ( ( ( G e. USHGraph /\ f = { N } ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> ( j e. { i e. dom I | ( I ` i ) = { N } } /\ ( I ` j ) = f ) ) |
| 84 |
83
|
ex |
|- ( ( G e. USHGraph /\ f = { N } ) -> ( ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) -> ( j e. { i e. dom I | ( I ` i ) = { N } } /\ ( I ` j ) = f ) ) ) |
| 85 |
84
|
reximdv2 |
|- ( ( G e. USHGraph /\ f = { N } ) -> ( E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = f -> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) ) |
| 86 |
85
|
ex |
|- ( G e. USHGraph -> ( f = { N } -> ( E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = f -> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) ) ) |
| 87 |
86
|
com23 |
|- ( G e. USHGraph -> ( E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = f -> ( f = { N } -> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) ) ) |
| 88 |
62 87
|
sylbid |
|- ( G e. USHGraph -> ( f e. ran ( iEdg ` G ) -> ( f = { N } -> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) ) ) |
| 89 |
47 88
|
sylbid |
|- ( G e. USHGraph -> ( f e. E -> ( f = { N } -> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) ) ) |
| 90 |
89
|
impd |
|- ( G e. USHGraph -> ( ( f e. E /\ f = { N } ) -> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) ) |
| 91 |
90
|
adantr |
|- ( ( G e. USHGraph /\ N e. V ) -> ( ( f e. E /\ f = { N } ) -> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) ) |
| 92 |
59 91
|
impbid |
|- ( ( G e. USHGraph /\ N e. V ) -> ( E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f <-> ( f e. E /\ f = { N } ) ) ) |
| 93 |
|
vex |
|- f e. _V |
| 94 |
|
eqeq2 |
|- ( e = f -> ( ( I ` j ) = e <-> ( I ` j ) = f ) ) |
| 95 |
94
|
rexbidv |
|- ( e = f -> ( E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = e <-> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) ) |
| 96 |
93 95
|
elab |
|- ( f e. { e | E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = e } <-> E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = f ) |
| 97 |
|
eqeq1 |
|- ( e = f -> ( e = { N } <-> f = { N } ) ) |
| 98 |
97 4
|
elrab2 |
|- ( f e. B <-> ( f e. E /\ f = { N } ) ) |
| 99 |
92 96 98
|
3bitr4g |
|- ( ( G e. USHGraph /\ N e. V ) -> ( f e. { e | E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = e } <-> f e. B ) ) |
| 100 |
99
|
eqrdv |
|- ( ( G e. USHGraph /\ N e. V ) -> { e | E. j e. { i e. dom I | ( I ` i ) = { N } } ( I ` j ) = e } = B ) |
| 101 |
30 100
|
eqtr2d |
|- ( ( G e. USHGraph /\ N e. V ) -> B = ( I " { i e. dom I | ( I ` i ) = { N } } ) ) |
| 102 |
21 12 101
|
f1oeq123d |
|- ( ( G e. USHGraph /\ N e. V ) -> ( F : A -1-1-onto-> B <-> ( I |` { i e. dom I | ( I ` i ) = { N } } ) : { i e. dom I | ( I ` i ) = { N } } -1-1-onto-> ( I " { i e. dom I | ( I ` i ) = { N } } ) ) ) |
| 103 |
11 102
|
mpbird |
|- ( ( G e. USHGraph /\ N e. V ) -> F : A -1-1-onto-> B ) |