Step |
Hyp |
Ref |
Expression |
1 |
|
ushgredgedgloop.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
2 |
|
ushgredgedgloop.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
ushgredgedgloop.a |
⊢ 𝐴 = { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } |
4 |
|
ushgredgedgloop.b |
⊢ 𝐵 = { 𝑒 ∈ 𝐸 ∣ 𝑒 = { 𝑁 } } |
5 |
|
ushgredgedgloop.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐼 ‘ 𝑥 ) ) |
6 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
7 |
6 2
|
ushgrf |
⊢ ( 𝐺 ∈ USHGraph → 𝐼 : dom 𝐼 –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐼 : dom 𝐼 –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
9 |
|
ssrab2 |
⊢ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ⊆ dom 𝐼 |
10 |
|
f1ores |
⊢ ( ( 𝐼 : dom 𝐼 –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ⊆ dom 𝐼 ) → ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ) : { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } –1-1-onto→ ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ) ) |
11 |
8 9 10
|
sylancl |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ) : { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } –1-1-onto→ ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ) ) |
12 |
3
|
a1i |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐴 = { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ) |
13 |
|
eqidd |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
14 |
12 13
|
mpteq12dva |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ↦ ( 𝐼 ‘ 𝑥 ) ) ) |
15 |
5 14
|
syl5eq |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 = ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ↦ ( 𝐼 ‘ 𝑥 ) ) ) |
16 |
|
f1f |
⊢ ( 𝐼 : dom 𝐼 –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → 𝐼 : dom 𝐼 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
17 |
7 16
|
syl |
⊢ ( 𝐺 ∈ USHGraph → 𝐼 : dom 𝐼 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
18 |
9
|
a1i |
⊢ ( 𝐺 ∈ USHGraph → { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ⊆ dom 𝐼 ) |
19 |
17 18
|
feqresmpt |
⊢ ( 𝐺 ∈ USHGraph → ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ) = ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ↦ ( 𝐼 ‘ 𝑥 ) ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ) = ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ↦ ( 𝐼 ‘ 𝑥 ) ) ) |
21 |
15 20
|
eqtr4d |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 = ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ) ) |
22 |
|
ushgruhgr |
⊢ ( 𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph ) |
23 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
24 |
23
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
25 |
22 24
|
syl |
⊢ ( 𝐺 ∈ USHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
26 |
2
|
funeqi |
⊢ ( Fun 𝐼 ↔ Fun ( iEdg ‘ 𝐺 ) ) |
27 |
25 26
|
sylibr |
⊢ ( 𝐺 ∈ USHGraph → Fun 𝐼 ) |
28 |
27
|
adantr |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → Fun 𝐼 ) |
29 |
|
dfimafn |
⊢ ( ( Fun 𝐼 ∧ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ⊆ dom 𝐼 ) → ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ) = { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑒 } ) |
30 |
28 9 29
|
sylancl |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ) = { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑒 } ) |
31 |
|
fveqeq2 |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐼 ‘ 𝑖 ) = { 𝑁 } ↔ ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) ) |
32 |
31
|
elrab |
⊢ ( 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ↔ ( 𝑗 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) ) |
33 |
|
simpl |
⊢ ( ( 𝑗 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) → 𝑗 ∈ dom 𝐼 ) |
34 |
|
fvelrn |
⊢ ( ( Fun 𝐼 ∧ 𝑗 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑗 ) ∈ ran 𝐼 ) |
35 |
2
|
eqcomi |
⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
36 |
35
|
rneqi |
⊢ ran ( iEdg ‘ 𝐺 ) = ran 𝐼 |
37 |
34 36
|
eleqtrrdi |
⊢ ( ( Fun 𝐼 ∧ 𝑗 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
38 |
28 33 37
|
syl2an |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) ) → ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
39 |
38
|
3adant3 |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
40 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝐼 ‘ 𝑗 ) → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
41 |
40
|
eqcoms |
⊢ ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
42 |
41
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
43 |
39 42
|
mpbird |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ) |
44 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
45 |
44
|
a1i |
⊢ ( 𝐺 ∈ USHGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
46 |
1 45
|
syl5eq |
⊢ ( 𝐺 ∈ USHGraph → 𝐸 = ran ( iEdg ‘ 𝐺 ) ) |
47 |
46
|
eleq2d |
⊢ ( 𝐺 ∈ USHGraph → ( 𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
49 |
48
|
3ad2ant1 |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → ( 𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
50 |
43 49
|
mpbird |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → 𝑓 ∈ 𝐸 ) |
51 |
|
eqeq1 |
⊢ ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → ( ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ↔ 𝑓 = { 𝑁 } ) ) |
52 |
51
|
biimpcd |
⊢ ( ( 𝐼 ‘ 𝑗 ) = { 𝑁 } → ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → 𝑓 = { 𝑁 } ) ) |
53 |
52
|
adantl |
⊢ ( ( 𝑗 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) → ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → 𝑓 = { 𝑁 } ) ) |
54 |
53
|
a1i |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑗 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) → ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → 𝑓 = { 𝑁 } ) ) ) |
55 |
54
|
3imp |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → 𝑓 = { 𝑁 } ) |
56 |
50 55
|
jca |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → ( 𝑓 ∈ 𝐸 ∧ 𝑓 = { 𝑁 } ) ) |
57 |
56
|
3exp |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑗 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) → ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → ( 𝑓 ∈ 𝐸 ∧ 𝑓 = { 𝑁 } ) ) ) ) |
58 |
32 57
|
syl5bi |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } → ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → ( 𝑓 ∈ 𝐸 ∧ 𝑓 = { 𝑁 } ) ) ) ) |
59 |
58
|
rexlimdv |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑓 → ( 𝑓 ∈ 𝐸 ∧ 𝑓 = { 𝑁 } ) ) ) |
60 |
25
|
funfnd |
⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
61 |
|
fvelrnb |
⊢ ( ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) |
62 |
60 61
|
syl |
⊢ ( 𝐺 ∈ USHGraph → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) |
63 |
35
|
dmeqi |
⊢ dom ( iEdg ‘ 𝐺 ) = dom 𝐼 |
64 |
63
|
eleq2i |
⊢ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ↔ 𝑗 ∈ dom 𝐼 ) |
65 |
64
|
biimpi |
⊢ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → 𝑗 ∈ dom 𝐼 ) |
66 |
65
|
adantr |
⊢ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) → 𝑗 ∈ dom 𝐼 ) |
67 |
66
|
adantl |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑓 = { 𝑁 } ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → 𝑗 ∈ dom 𝐼 ) |
68 |
35
|
fveq1i |
⊢ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = ( 𝐼 ‘ 𝑗 ) |
69 |
68
|
eqeq2i |
⊢ ( 𝑓 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ↔ 𝑓 = ( 𝐼 ‘ 𝑗 ) ) |
70 |
69
|
biimpi |
⊢ ( 𝑓 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → 𝑓 = ( 𝐼 ‘ 𝑗 ) ) |
71 |
70
|
eqcoms |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → 𝑓 = ( 𝐼 ‘ 𝑗 ) ) |
72 |
71
|
eqeq1d |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ( 𝑓 = { 𝑁 } ↔ ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) ) |
73 |
72
|
biimpcd |
⊢ ( 𝑓 = { 𝑁 } → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) ) |
74 |
73
|
adantl |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑓 = { 𝑁 } ) → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) ) |
75 |
74
|
adantld |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑓 = { 𝑁 } ) → ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) → ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) ) |
76 |
75
|
imp |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑓 = { 𝑁 } ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) |
77 |
67 76
|
jca |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑓 = { 𝑁 } ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → ( 𝑗 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝑗 ) = { 𝑁 } ) ) |
78 |
77 32
|
sylibr |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑓 = { 𝑁 } ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ) |
79 |
68
|
eqeq1i |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ↔ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) |
80 |
79
|
biimpi |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ( 𝐼 ‘ 𝑗 ) = 𝑓 ) |
81 |
80
|
adantl |
⊢ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) → ( 𝐼 ‘ 𝑗 ) = 𝑓 ) |
82 |
81
|
adantl |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑓 = { 𝑁 } ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → ( 𝐼 ‘ 𝑗 ) = 𝑓 ) |
83 |
78 82
|
jca |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑓 = { 𝑁 } ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → ( 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
84 |
83
|
ex |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑓 = { 𝑁 } ) → ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) → ( 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) ) |
85 |
84
|
reximdv2 |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑓 = { 𝑁 } ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
86 |
85
|
ex |
⊢ ( 𝐺 ∈ USHGraph → ( 𝑓 = { 𝑁 } → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) ) |
87 |
86
|
com23 |
⊢ ( 𝐺 ∈ USHGraph → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ( 𝑓 = { 𝑁 } → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) ) |
88 |
62 87
|
sylbid |
⊢ ( 𝐺 ∈ USHGraph → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) → ( 𝑓 = { 𝑁 } → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) ) |
89 |
47 88
|
sylbid |
⊢ ( 𝐺 ∈ USHGraph → ( 𝑓 ∈ 𝐸 → ( 𝑓 = { 𝑁 } → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) ) |
90 |
89
|
impd |
⊢ ( 𝐺 ∈ USHGraph → ( ( 𝑓 ∈ 𝐸 ∧ 𝑓 = { 𝑁 } ) → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
91 |
90
|
adantr |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑓 ∈ 𝐸 ∧ 𝑓 = { 𝑁 } ) → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
92 |
59 91
|
impbid |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑓 ↔ ( 𝑓 ∈ 𝐸 ∧ 𝑓 = { 𝑁 } ) ) ) |
93 |
|
vex |
⊢ 𝑓 ∈ V |
94 |
|
eqeq2 |
⊢ ( 𝑒 = 𝑓 → ( ( 𝐼 ‘ 𝑗 ) = 𝑒 ↔ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
95 |
94
|
rexbidv |
⊢ ( 𝑒 = 𝑓 → ( ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑒 ↔ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
96 |
93 95
|
elab |
⊢ ( 𝑓 ∈ { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑒 } ↔ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) |
97 |
|
eqeq1 |
⊢ ( 𝑒 = 𝑓 → ( 𝑒 = { 𝑁 } ↔ 𝑓 = { 𝑁 } ) ) |
98 |
97 4
|
elrab2 |
⊢ ( 𝑓 ∈ 𝐵 ↔ ( 𝑓 ∈ 𝐸 ∧ 𝑓 = { 𝑁 } ) ) |
99 |
92 96 98
|
3bitr4g |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑓 ∈ { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑒 } ↔ 𝑓 ∈ 𝐵 ) ) |
100 |
99
|
eqrdv |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ( 𝐼 ‘ 𝑗 ) = 𝑒 } = 𝐵 ) |
101 |
30 100
|
eqtr2d |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐵 = ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ) ) |
102 |
21 12 101
|
f1oeq123d |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ) : { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } –1-1-onto→ ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑁 } } ) ) ) |
103 |
11 102
|
mpbird |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |