Metamath Proof Explorer


Theorem ushgredgedgloop

Description: In a simple hypergraph there is a 1-1 onto mapping between the indexed edges being loops at a fixed vertex N and the set of loops at this vertex N . (Contributed by AV, 11-Dec-2020) (Revised by AV, 6-Jul-2022)

Ref Expression
Hypotheses ushgredgedgloop.e E = Edg G
ushgredgedgloop.i I = iEdg G
ushgredgedgloop.a A = i dom I | I i = N
ushgredgedgloop.b B = e E | e = N
ushgredgedgloop.f F = x A I x
Assertion ushgredgedgloop G USHGraph N V F : A 1-1 onto B

Proof

Step Hyp Ref Expression
1 ushgredgedgloop.e E = Edg G
2 ushgredgedgloop.i I = iEdg G
3 ushgredgedgloop.a A = i dom I | I i = N
4 ushgredgedgloop.b B = e E | e = N
5 ushgredgedgloop.f F = x A I x
6 eqid Vtx G = Vtx G
7 6 2 ushgrf G USHGraph I : dom I 1-1 𝒫 Vtx G
8 7 adantr G USHGraph N V I : dom I 1-1 𝒫 Vtx G
9 ssrab2 i dom I | I i = N dom I
10 f1ores I : dom I 1-1 𝒫 Vtx G i dom I | I i = N dom I I i dom I | I i = N : i dom I | I i = N 1-1 onto I i dom I | I i = N
11 8 9 10 sylancl G USHGraph N V I i dom I | I i = N : i dom I | I i = N 1-1 onto I i dom I | I i = N
12 3 a1i G USHGraph N V A = i dom I | I i = N
13 eqidd G USHGraph N V x A I x = I x
14 12 13 mpteq12dva G USHGraph N V x A I x = x i dom I | I i = N I x
15 5 14 syl5eq G USHGraph N V F = x i dom I | I i = N I x
16 f1f I : dom I 1-1 𝒫 Vtx G I : dom I 𝒫 Vtx G
17 7 16 syl G USHGraph I : dom I 𝒫 Vtx G
18 9 a1i G USHGraph i dom I | I i = N dom I
19 17 18 feqresmpt G USHGraph I i dom I | I i = N = x i dom I | I i = N I x
20 19 adantr G USHGraph N V I i dom I | I i = N = x i dom I | I i = N I x
21 15 20 eqtr4d G USHGraph N V F = I i dom I | I i = N
22 ushgruhgr G USHGraph G UHGraph
23 eqid iEdg G = iEdg G
24 23 uhgrfun G UHGraph Fun iEdg G
25 22 24 syl G USHGraph Fun iEdg G
26 2 funeqi Fun I Fun iEdg G
27 25 26 sylibr G USHGraph Fun I
28 27 adantr G USHGraph N V Fun I
29 dfimafn Fun I i dom I | I i = N dom I I i dom I | I i = N = e | j i dom I | I i = N I j = e
30 28 9 29 sylancl G USHGraph N V I i dom I | I i = N = e | j i dom I | I i = N I j = e
31 fveqeq2 i = j I i = N I j = N
32 31 elrab j i dom I | I i = N j dom I I j = N
33 simpl j dom I I j = N j dom I
34 fvelrn Fun I j dom I I j ran I
35 2 eqcomi iEdg G = I
36 35 rneqi ran iEdg G = ran I
37 34 36 eleqtrrdi Fun I j dom I I j ran iEdg G
38 28 33 37 syl2an G USHGraph N V j dom I I j = N I j ran iEdg G
39 38 3adant3 G USHGraph N V j dom I I j = N I j = f I j ran iEdg G
40 eleq1 f = I j f ran iEdg G I j ran iEdg G
41 40 eqcoms I j = f f ran iEdg G I j ran iEdg G
42 41 3ad2ant3 G USHGraph N V j dom I I j = N I j = f f ran iEdg G I j ran iEdg G
43 39 42 mpbird G USHGraph N V j dom I I j = N I j = f f ran iEdg G
44 edgval Edg G = ran iEdg G
45 44 a1i G USHGraph Edg G = ran iEdg G
46 1 45 syl5eq G USHGraph E = ran iEdg G
47 46 eleq2d G USHGraph f E f ran iEdg G
48 47 adantr G USHGraph N V f E f ran iEdg G
49 48 3ad2ant1 G USHGraph N V j dom I I j = N I j = f f E f ran iEdg G
50 43 49 mpbird G USHGraph N V j dom I I j = N I j = f f E
51 eqeq1 I j = f I j = N f = N
52 51 biimpcd I j = N I j = f f = N
53 52 adantl j dom I I j = N I j = f f = N
54 53 a1i G USHGraph N V j dom I I j = N I j = f f = N
55 54 3imp G USHGraph N V j dom I I j = N I j = f f = N
56 50 55 jca G USHGraph N V j dom I I j = N I j = f f E f = N
57 56 3exp G USHGraph N V j dom I I j = N I j = f f E f = N
58 32 57 syl5bi G USHGraph N V j i dom I | I i = N I j = f f E f = N
59 58 rexlimdv G USHGraph N V j i dom I | I i = N I j = f f E f = N
60 25 funfnd G USHGraph iEdg G Fn dom iEdg G
61 fvelrnb iEdg G Fn dom iEdg G f ran iEdg G j dom iEdg G iEdg G j = f
62 60 61 syl G USHGraph f ran iEdg G j dom iEdg G iEdg G j = f
63 35 dmeqi dom iEdg G = dom I
64 63 eleq2i j dom iEdg G j dom I
65 64 biimpi j dom iEdg G j dom I
66 65 adantr j dom iEdg G iEdg G j = f j dom I
67 66 adantl G USHGraph f = N j dom iEdg G iEdg G j = f j dom I
68 35 fveq1i iEdg G j = I j
69 68 eqeq2i f = iEdg G j f = I j
70 69 biimpi f = iEdg G j f = I j
71 70 eqcoms iEdg G j = f f = I j
72 71 eqeq1d iEdg G j = f f = N I j = N
73 72 biimpcd f = N iEdg G j = f I j = N
74 73 adantl G USHGraph f = N iEdg G j = f I j = N
75 74 adantld G USHGraph f = N j dom iEdg G iEdg G j = f I j = N
76 75 imp G USHGraph f = N j dom iEdg G iEdg G j = f I j = N
77 67 76 jca G USHGraph f = N j dom iEdg G iEdg G j = f j dom I I j = N
78 77 32 sylibr G USHGraph f = N j dom iEdg G iEdg G j = f j i dom I | I i = N
79 68 eqeq1i iEdg G j = f I j = f
80 79 biimpi iEdg G j = f I j = f
81 80 adantl j dom iEdg G iEdg G j = f I j = f
82 81 adantl G USHGraph f = N j dom iEdg G iEdg G j = f I j = f
83 78 82 jca G USHGraph f = N j dom iEdg G iEdg G j = f j i dom I | I i = N I j = f
84 83 ex G USHGraph f = N j dom iEdg G iEdg G j = f j i dom I | I i = N I j = f
85 84 reximdv2 G USHGraph f = N j dom iEdg G iEdg G j = f j i dom I | I i = N I j = f
86 85 ex G USHGraph f = N j dom iEdg G iEdg G j = f j i dom I | I i = N I j = f
87 86 com23 G USHGraph j dom iEdg G iEdg G j = f f = N j i dom I | I i = N I j = f
88 62 87 sylbid G USHGraph f ran iEdg G f = N j i dom I | I i = N I j = f
89 47 88 sylbid G USHGraph f E f = N j i dom I | I i = N I j = f
90 89 impd G USHGraph f E f = N j i dom I | I i = N I j = f
91 90 adantr G USHGraph N V f E f = N j i dom I | I i = N I j = f
92 59 91 impbid G USHGraph N V j i dom I | I i = N I j = f f E f = N
93 vex f V
94 eqeq2 e = f I j = e I j = f
95 94 rexbidv e = f j i dom I | I i = N I j = e j i dom I | I i = N I j = f
96 93 95 elab f e | j i dom I | I i = N I j = e j i dom I | I i = N I j = f
97 eqeq1 e = f e = N f = N
98 97 4 elrab2 f B f E f = N
99 92 96 98 3bitr4g G USHGraph N V f e | j i dom I | I i = N I j = e f B
100 99 eqrdv G USHGraph N V e | j i dom I | I i = N I j = e = B
101 30 100 eqtr2d G USHGraph N V B = I i dom I | I i = N
102 21 12 101 f1oeq123d G USHGraph N V F : A 1-1 onto B I i dom I | I i = N : i dom I | I i = N 1-1 onto I i dom I | I i = N
103 11 102 mpbird G USHGraph N V F : A 1-1 onto B