Step |
Hyp |
Ref |
Expression |
1 |
|
usgrexmpl.v |
⊢ 𝑉 = ( 0 ... 4 ) |
2 |
|
usgrexmpl.e |
⊢ 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 |
3 |
|
usgrexmpl.g |
⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 |
4 |
1
|
ovexi |
⊢ 𝑉 ∈ V |
5 |
|
s4cli |
⊢ 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 ∈ Word V |
6 |
5
|
elexi |
⊢ 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 ∈ V |
7 |
2 6
|
eqeltri |
⊢ 𝐸 ∈ V |
8 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) |
9 |
|
opiedgfv |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) |
10 |
8 9
|
jca |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ∧ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) ) |
11 |
4 7 10
|
mp2an |
⊢ ( ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ∧ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) |
12 |
3
|
fveq2i |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) |
13 |
12
|
eqeq1i |
⊢ ( ( Vtx ‘ 𝐺 ) = 𝑉 ↔ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) |
14 |
3
|
fveq2i |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) |
15 |
14
|
eqeq1i |
⊢ ( ( iEdg ‘ 𝐺 ) = 𝐸 ↔ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) |
16 |
13 15
|
anbi12i |
⊢ ( ( ( Vtx ‘ 𝐺 ) = 𝑉 ∧ ( iEdg ‘ 𝐺 ) = 𝐸 ) ↔ ( ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ∧ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) ) |
17 |
11 16
|
mpbir |
⊢ ( ( Vtx ‘ 𝐺 ) = 𝑉 ∧ ( iEdg ‘ 𝐺 ) = 𝐸 ) |