Step |
Hyp |
Ref |
Expression |
1 |
|
hashnbusgrvd.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
uvtxnbvtxm1 |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝑈 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) ) |
3 |
|
fusgrusgr |
⊢ ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph ) |
4 |
1
|
hashnbusgrvd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ) |
6 |
5
|
eqeq1d |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) ) |
7 |
2 6
|
bitrd |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝑈 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) ) |