| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uspgrupgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) |
| 2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 4 |
2 3
|
upgredg2vtx |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐸 ) → ∃ 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ) |
| 5 |
1 4
|
syl3an1 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐸 ) → ∃ 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ) |
| 6 |
|
eqtr2 |
⊢ ( ( 𝐸 = { 𝑌 , 𝑦 } ∧ 𝐸 = { 𝑌 , 𝑥 } ) → { 𝑌 , 𝑦 } = { 𝑌 , 𝑥 } ) |
| 7 |
|
vex |
⊢ 𝑦 ∈ V |
| 8 |
|
vex |
⊢ 𝑥 ∈ V |
| 9 |
7 8
|
preqr2 |
⊢ ( { 𝑌 , 𝑦 } = { 𝑌 , 𝑥 } → 𝑦 = 𝑥 ) |
| 10 |
6 9
|
syl |
⊢ ( ( 𝐸 = { 𝑌 , 𝑦 } ∧ 𝐸 = { 𝑌 , 𝑥 } ) → 𝑦 = 𝑥 ) |
| 11 |
10
|
a1i |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐸 ) ∧ ( 𝑦 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝐸 = { 𝑌 , 𝑦 } ∧ 𝐸 = { 𝑌 , 𝑥 } ) → 𝑦 = 𝑥 ) ) |
| 12 |
11
|
ralrimivva |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐸 ) → ∀ 𝑦 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ( ( 𝐸 = { 𝑌 , 𝑦 } ∧ 𝐸 = { 𝑌 , 𝑥 } ) → 𝑦 = 𝑥 ) ) |
| 13 |
|
preq2 |
⊢ ( 𝑦 = 𝑥 → { 𝑌 , 𝑦 } = { 𝑌 , 𝑥 } ) |
| 14 |
13
|
eqeq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝐸 = { 𝑌 , 𝑦 } ↔ 𝐸 = { 𝑌 , 𝑥 } ) ) |
| 15 |
14
|
reu4 |
⊢ ( ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ↔ ( ∃ 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ∧ ∀ 𝑦 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ( ( 𝐸 = { 𝑌 , 𝑦 } ∧ 𝐸 = { 𝑌 , 𝑥 } ) → 𝑦 = 𝑥 ) ) ) |
| 16 |
5 12 15
|
sylanbrc |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐸 ) → ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ) |