Metamath Proof Explorer


Theorem ustne0

Description: A uniform structure cannot be empty. (Contributed by Thierry Arnoux, 16-Nov-2017)

Ref Expression
Assertion ustne0 ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 ustbasel ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) ∈ 𝑈 )
2 1 ne0d ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ≠ ∅ )