| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uvtxnbgr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | uvtxusgr.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | uvtxusgr | ⊢ ( 𝐺  ∈  USGraph  →  ( UnivVtx ‘ 𝐺 )  =  { 𝑣  ∈  𝑉  ∣  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑘 ,  𝑣 }  ∈  𝐸 } ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑁  ∈  ( UnivVtx ‘ 𝐺 )  ↔  𝑁  ∈  { 𝑣  ∈  𝑉  ∣  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑘 ,  𝑣 }  ∈  𝐸 } ) ) | 
						
							| 5 |  | sneq | ⊢ ( 𝑣  =  𝑁  →  { 𝑣 }  =  { 𝑁 } ) | 
						
							| 6 | 5 | difeq2d | ⊢ ( 𝑣  =  𝑁  →  ( 𝑉  ∖  { 𝑣 } )  =  ( 𝑉  ∖  { 𝑁 } ) ) | 
						
							| 7 |  | preq2 | ⊢ ( 𝑣  =  𝑁  →  { 𝑘 ,  𝑣 }  =  { 𝑘 ,  𝑁 } ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝑣  =  𝑁  →  ( { 𝑘 ,  𝑣 }  ∈  𝐸  ↔  { 𝑘 ,  𝑁 }  ∈  𝐸 ) ) | 
						
							| 9 | 6 8 | raleqbidv | ⊢ ( 𝑣  =  𝑁  →  ( ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑘 ,  𝑣 }  ∈  𝐸  ↔  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑘 ,  𝑁 }  ∈  𝐸 ) ) | 
						
							| 10 | 9 | elrab | ⊢ ( 𝑁  ∈  { 𝑣  ∈  𝑉  ∣  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑘 ,  𝑣 }  ∈  𝐸 }  ↔  ( 𝑁  ∈  𝑉  ∧  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑘 ,  𝑁 }  ∈  𝐸 ) ) | 
						
							| 11 | 4 10 | bitrdi | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑁  ∈  ( UnivVtx ‘ 𝐺 )  ↔  ( 𝑁  ∈  𝑉  ∧  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑘 ,  𝑁 }  ∈  𝐸 ) ) ) |