| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfvopnbgr2.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | dfvopnbgr2.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | dfvopnbgr2.u | ⊢ 𝑈  =  { 𝑛  ∈  𝑉  ∣  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑁 )  ∨  ∃ 𝑒  ∈  𝐸 ( 𝑁  =  𝑛  ∧  𝑒  =  { 𝑁 } ) ) } | 
						
							| 4 | 1 2 3 | dfvopnbgr2 | ⊢ ( 𝑁  ∈  𝑉  →  𝑈  =  { 𝑛  ∈  𝑉  ∣  ∃ 𝑒  ∈  𝐸 ( ( 𝑛  ≠  𝑁  ∧  𝑁  ∈  𝑒  ∧  𝑛  ∈  𝑒 )  ∨  ( 𝑛  =  𝑁  ∧  𝑒  =  { 𝑛 } ) ) } ) | 
						
							| 5 | 4 | eleq2d | ⊢ ( 𝑁  ∈  𝑉  →  ( 𝑋  ∈  𝑈  ↔  𝑋  ∈  { 𝑛  ∈  𝑉  ∣  ∃ 𝑒  ∈  𝐸 ( ( 𝑛  ≠  𝑁  ∧  𝑁  ∈  𝑒  ∧  𝑛  ∈  𝑒 )  ∨  ( 𝑛  =  𝑁  ∧  𝑒  =  { 𝑛 } ) ) } ) ) | 
						
							| 6 |  | neeq1 | ⊢ ( 𝑛  =  𝑋  →  ( 𝑛  ≠  𝑁  ↔  𝑋  ≠  𝑁 ) ) | 
						
							| 7 |  | eleq1 | ⊢ ( 𝑛  =  𝑋  →  ( 𝑛  ∈  𝑒  ↔  𝑋  ∈  𝑒 ) ) | 
						
							| 8 | 6 7 | 3anbi13d | ⊢ ( 𝑛  =  𝑋  →  ( ( 𝑛  ≠  𝑁  ∧  𝑁  ∈  𝑒  ∧  𝑛  ∈  𝑒 )  ↔  ( 𝑋  ≠  𝑁  ∧  𝑁  ∈  𝑒  ∧  𝑋  ∈  𝑒 ) ) ) | 
						
							| 9 |  | eqeq1 | ⊢ ( 𝑛  =  𝑋  →  ( 𝑛  =  𝑁  ↔  𝑋  =  𝑁 ) ) | 
						
							| 10 |  | sneq | ⊢ ( 𝑛  =  𝑋  →  { 𝑛 }  =  { 𝑋 } ) | 
						
							| 11 | 10 | eqeq2d | ⊢ ( 𝑛  =  𝑋  →  ( 𝑒  =  { 𝑛 }  ↔  𝑒  =  { 𝑋 } ) ) | 
						
							| 12 | 9 11 | anbi12d | ⊢ ( 𝑛  =  𝑋  →  ( ( 𝑛  =  𝑁  ∧  𝑒  =  { 𝑛 } )  ↔  ( 𝑋  =  𝑁  ∧  𝑒  =  { 𝑋 } ) ) ) | 
						
							| 13 | 8 12 | orbi12d | ⊢ ( 𝑛  =  𝑋  →  ( ( ( 𝑛  ≠  𝑁  ∧  𝑁  ∈  𝑒  ∧  𝑛  ∈  𝑒 )  ∨  ( 𝑛  =  𝑁  ∧  𝑒  =  { 𝑛 } ) )  ↔  ( ( 𝑋  ≠  𝑁  ∧  𝑁  ∈  𝑒  ∧  𝑋  ∈  𝑒 )  ∨  ( 𝑋  =  𝑁  ∧  𝑒  =  { 𝑋 } ) ) ) ) | 
						
							| 14 | 13 | rexbidv | ⊢ ( 𝑛  =  𝑋  →  ( ∃ 𝑒  ∈  𝐸 ( ( 𝑛  ≠  𝑁  ∧  𝑁  ∈  𝑒  ∧  𝑛  ∈  𝑒 )  ∨  ( 𝑛  =  𝑁  ∧  𝑒  =  { 𝑛 } ) )  ↔  ∃ 𝑒  ∈  𝐸 ( ( 𝑋  ≠  𝑁  ∧  𝑁  ∈  𝑒  ∧  𝑋  ∈  𝑒 )  ∨  ( 𝑋  =  𝑁  ∧  𝑒  =  { 𝑋 } ) ) ) ) | 
						
							| 15 | 14 | elrab | ⊢ ( 𝑋  ∈  { 𝑛  ∈  𝑉  ∣  ∃ 𝑒  ∈  𝐸 ( ( 𝑛  ≠  𝑁  ∧  𝑁  ∈  𝑒  ∧  𝑛  ∈  𝑒 )  ∨  ( 𝑛  =  𝑁  ∧  𝑒  =  { 𝑛 } ) ) }  ↔  ( 𝑋  ∈  𝑉  ∧  ∃ 𝑒  ∈  𝐸 ( ( 𝑋  ≠  𝑁  ∧  𝑁  ∈  𝑒  ∧  𝑋  ∈  𝑒 )  ∨  ( 𝑋  =  𝑁  ∧  𝑒  =  { 𝑋 } ) ) ) ) | 
						
							| 16 | 5 15 | bitrdi | ⊢ ( 𝑁  ∈  𝑉  →  ( 𝑋  ∈  𝑈  ↔  ( 𝑋  ∈  𝑉  ∧  ∃ 𝑒  ∈  𝐸 ( ( 𝑋  ≠  𝑁  ∧  𝑁  ∈  𝑒  ∧  𝑋  ∈  𝑒 )  ∨  ( 𝑋  =  𝑁  ∧  𝑒  =  { 𝑋 } ) ) ) ) ) |