Step |
Hyp |
Ref |
Expression |
1 |
|
dfvopnbgr2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
dfvopnbgr2.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
dfvopnbgr2.u |
⊢ 𝑈 = { 𝑛 ∈ 𝑉 ∣ ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ∨ ∃ 𝑒 ∈ 𝐸 ( 𝑁 = 𝑛 ∧ 𝑒 = { 𝑁 } ) ) } |
4 |
1 2 3
|
dfvopnbgr2 |
⊢ ( 𝑁 ∈ 𝑉 → 𝑈 = { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) } ) |
5 |
4
|
eleq2d |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑋 ∈ 𝑈 ↔ 𝑋 ∈ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) } ) ) |
6 |
|
neeq1 |
⊢ ( 𝑛 = 𝑋 → ( 𝑛 ≠ 𝑁 ↔ 𝑋 ≠ 𝑁 ) ) |
7 |
|
eleq1 |
⊢ ( 𝑛 = 𝑋 → ( 𝑛 ∈ 𝑒 ↔ 𝑋 ∈ 𝑒 ) ) |
8 |
6 7
|
3anbi13d |
⊢ ( 𝑛 = 𝑋 → ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ↔ ( 𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒 ) ) ) |
9 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑋 → ( 𝑛 = 𝑁 ↔ 𝑋 = 𝑁 ) ) |
10 |
|
sneq |
⊢ ( 𝑛 = 𝑋 → { 𝑛 } = { 𝑋 } ) |
11 |
10
|
eqeq2d |
⊢ ( 𝑛 = 𝑋 → ( 𝑒 = { 𝑛 } ↔ 𝑒 = { 𝑋 } ) ) |
12 |
9 11
|
anbi12d |
⊢ ( 𝑛 = 𝑋 → ( ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ↔ ( 𝑋 = 𝑁 ∧ 𝑒 = { 𝑋 } ) ) ) |
13 |
8 12
|
orbi12d |
⊢ ( 𝑛 = 𝑋 → ( ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ↔ ( ( 𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒 ) ∨ ( 𝑋 = 𝑁 ∧ 𝑒 = { 𝑋 } ) ) ) ) |
14 |
13
|
rexbidv |
⊢ ( 𝑛 = 𝑋 → ( ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ↔ ∃ 𝑒 ∈ 𝐸 ( ( 𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒 ) ∨ ( 𝑋 = 𝑁 ∧ 𝑒 = { 𝑋 } ) ) ) ) |
15 |
14
|
elrab |
⊢ ( 𝑋 ∈ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) } ↔ ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 ( ( 𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒 ) ∨ ( 𝑋 = 𝑁 ∧ 𝑒 = { 𝑋 } ) ) ) ) |
16 |
5 15
|
bitrdi |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 ( ( 𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒 ) ∨ ( 𝑋 = 𝑁 ∧ 𝑒 = { 𝑋 } ) ) ) ) ) |