| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wfr2aOLD.1 |
⊢ 𝑅 We 𝐴 |
| 2 |
|
wfr2aOLD.2 |
⊢ 𝑅 Se 𝐴 |
| 3 |
|
wfr2aOLD.3 |
⊢ 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 ) |
| 4 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 5 |
|
predeq3 |
⊢ ( 𝑥 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑥 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
| 6 |
5
|
reseq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑥 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |
| 8 |
4 7
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) ) |
| 9 |
1 2 3
|
wfrlem12OLD |
⊢ ( 𝑥 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ) ) |
| 10 |
8 9
|
vtoclga |
⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |