Step |
Hyp |
Ref |
Expression |
1 |
|
wfr2aOLD.1 |
⊢ 𝑅 We 𝐴 |
2 |
|
wfr2aOLD.2 |
⊢ 𝑅 Se 𝐴 |
3 |
|
wfr2aOLD.3 |
⊢ 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
5 |
|
predeq3 |
⊢ ( 𝑥 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑥 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
6 |
5
|
reseq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑥 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |
8 |
4 7
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) ) |
9 |
1 2 3
|
wfrlem12OLD |
⊢ ( 𝑥 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ) ) |
10 |
8 9
|
vtoclga |
⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |