Metamath Proof Explorer


Theorem wl-sb8ft

Description: Substitution of variable in universal quantifier. Closed form of sb8f . (Contributed by Wolf Lammen, 27-Apr-2025)

Ref Expression
Assertion wl-sb8ft ( ∀ 𝑥𝑦 𝜑 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 sbft ( Ⅎ 𝑦 𝜑 → ( [ 𝑥 / 𝑦 ] 𝜑𝜑 ) )
2 1 alimi ( ∀ 𝑥𝑦 𝜑 → ∀ 𝑥 ( [ 𝑥 / 𝑦 ] 𝜑𝜑 ) )
3 albi ( ∀ 𝑥 ( [ 𝑥 / 𝑦 ] 𝜑𝜑 ) → ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 𝜑 ) )
4 2 3 syl ( ∀ 𝑥𝑦 𝜑 → ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 𝜑 ) )
5 wl-sb9v ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )
6 4 5 bitr3di ( ∀ 𝑥𝑦 𝜑 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )