Metamath Proof Explorer


Theorem wl-sb9v

Description: Commutation of quantification and substitution variables based on fewer axioms than sb9 . (Contributed by Wolf Lammen, 27-Apr-2025)

Ref Expression
Assertion wl-sb9v ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 alcom ( ∀ 𝑥𝑦 ( 𝑥 = 𝑦𝜑 ) ↔ ∀ 𝑦𝑥 ( 𝑥 = 𝑦𝜑 ) )
2 sb6 ( [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑥𝜑 ) )
3 equcom ( 𝑦 = 𝑥𝑥 = 𝑦 )
4 3 imbi1i ( ( 𝑦 = 𝑥𝜑 ) ↔ ( 𝑥 = 𝑦𝜑 ) )
5 4 albii ( ∀ 𝑦 ( 𝑦 = 𝑥𝜑 ) ↔ ∀ 𝑦 ( 𝑥 = 𝑦𝜑 ) )
6 2 5 bitri ( [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ( 𝑥 = 𝑦𝜑 ) )
7 6 albii ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑥𝑦 ( 𝑥 = 𝑦𝜑 ) )
8 sb6 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
9 8 albii ( ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦𝑥 ( 𝑥 = 𝑦𝜑 ) )
10 1 7 9 3bitr4i ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )