| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alcom |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 2 |
|
sb6 |
⊢ ( [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑥 → 𝜑 ) ) |
| 3 |
|
equcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
| 4 |
3
|
imbi1i |
⊢ ( ( 𝑦 = 𝑥 → 𝜑 ) ↔ ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 5 |
4
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑥 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 6 |
2 5
|
bitri |
⊢ ( [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 7 |
6
|
albii |
⊢ ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 8 |
|
sb6 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 9 |
8
|
albii |
⊢ ( ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 10 |
1 7 9
|
3bitr4i |
⊢ ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |