Metamath Proof Explorer


Theorem wl-sb9v

Description: Commutation of quantification and substitution variables based on fewer axioms than sb9 . (Contributed by Wolf Lammen, 27-Apr-2025)

Ref Expression
Assertion wl-sb9v
|- ( A. x [ x / y ] ph <-> A. y [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 alcom
 |-  ( A. x A. y ( x = y -> ph ) <-> A. y A. x ( x = y -> ph ) )
2 sb6
 |-  ( [ x / y ] ph <-> A. y ( y = x -> ph ) )
3 equcom
 |-  ( y = x <-> x = y )
4 3 imbi1i
 |-  ( ( y = x -> ph ) <-> ( x = y -> ph ) )
5 4 albii
 |-  ( A. y ( y = x -> ph ) <-> A. y ( x = y -> ph ) )
6 2 5 bitri
 |-  ( [ x / y ] ph <-> A. y ( x = y -> ph ) )
7 6 albii
 |-  ( A. x [ x / y ] ph <-> A. x A. y ( x = y -> ph ) )
8 sb6
 |-  ( [ y / x ] ph <-> A. x ( x = y -> ph ) )
9 8 albii
 |-  ( A. y [ y / x ] ph <-> A. y A. x ( x = y -> ph ) )
10 1 7 9 3bitr4i
 |-  ( A. x [ x / y ] ph <-> A. y [ y / x ] ph )