Metamath Proof Explorer


Theorem wl-sb8eft

Description: Substitution of variable in existentialal quantifier. Closed form of sb8ef . (Contributed by Wolf Lammen, 27-Apr-2025)

Ref Expression
Assertion wl-sb8eft ( ∀ 𝑥𝑦 𝜑 → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 nfnt ( Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 ¬ 𝜑 )
2 1 alimi ( ∀ 𝑥𝑦 𝜑 → ∀ 𝑥𝑦 ¬ 𝜑 )
3 wl-sb8ft ( ∀ 𝑥𝑦 ¬ 𝜑 → ( ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ¬ 𝜑 ) )
4 2 3 syl ( ∀ 𝑥𝑦 𝜑 → ( ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ¬ 𝜑 ) )
5 alnex ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 )
6 sbn ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑦 / 𝑥 ] 𝜑 )
7 6 albii ( ∀ 𝑦 [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ∀ 𝑦 ¬ [ 𝑦 / 𝑥 ] 𝜑 )
8 alnex ( ∀ 𝑦 ¬ [ 𝑦 / 𝑥 ] 𝜑 ↔ ¬ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )
9 7 8 bitri ( ∀ 𝑦 [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )
10 4 5 9 3bitr3g ( ∀ 𝑥𝑦 𝜑 → ( ¬ ∃ 𝑥 𝜑 ↔ ¬ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )
11 10 con4bid ( ∀ 𝑥𝑦 𝜑 → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )