| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfnt |
⊢ ( Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 ¬ 𝜑 ) |
| 2 |
1
|
alimi |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ∀ 𝑥 Ⅎ 𝑦 ¬ 𝜑 ) |
| 3 |
|
wl-sb8ft |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 ¬ 𝜑 → ( ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
| 4 |
2 3
|
syl |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
| 5 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) |
| 6 |
|
sbn |
⊢ ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) |
| 7 |
6
|
albii |
⊢ ( ∀ 𝑦 [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ∀ 𝑦 ¬ [ 𝑦 / 𝑥 ] 𝜑 ) |
| 8 |
|
alnex |
⊢ ( ∀ 𝑦 ¬ [ 𝑦 / 𝑥 ] 𝜑 ↔ ¬ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
| 9 |
7 8
|
bitri |
⊢ ( ∀ 𝑦 [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
| 10 |
4 5 9
|
3bitr3g |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ¬ ∃ 𝑥 𝜑 ↔ ¬ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 11 |
10
|
con4bid |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |