Metamath Proof Explorer


Theorem wl-sb8t

Description: Substitution of variable in universal quantifier. Closed form of sb8 . (Contributed by Wolf Lammen, 27-Jul-2019)

Ref Expression
Assertion wl-sb8t ( ∀ 𝑥𝑦 𝜑 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 nfa1 𝑥𝑥𝑦 𝜑
2 nfnf1 𝑦𝑦 𝜑
3 2 nfal 𝑦𝑥𝑦 𝜑
4 sp ( ∀ 𝑥𝑦 𝜑 → Ⅎ 𝑦 𝜑 )
5 wl-nfs1t ( Ⅎ 𝑦 𝜑 → Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 )
6 5 sps ( ∀ 𝑥𝑦 𝜑 → Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 )
7 sbequ12 ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) )
8 7 a1i ( ∀ 𝑥𝑦 𝜑 → ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) )
9 1 3 4 6 8 cbv2 ( ∀ 𝑥𝑦 𝜑 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )