Description: Substitution of variable in universal quantifier. Closed form of sb8 . (Contributed by Wolf Lammen, 27-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-sb8t | |- ( A. x F/ y ph -> ( A. x ph <-> A. y [ y / x ] ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 | |- F/ x A. x F/ y ph |
|
2 | nfnf1 | |- F/ y F/ y ph |
|
3 | 2 | nfal | |- F/ y A. x F/ y ph |
4 | sp | |- ( A. x F/ y ph -> F/ y ph ) |
|
5 | wl-nfs1t | |- ( F/ y ph -> F/ x [ y / x ] ph ) |
|
6 | 5 | sps | |- ( A. x F/ y ph -> F/ x [ y / x ] ph ) |
7 | sbequ12 | |- ( x = y -> ( ph <-> [ y / x ] ph ) ) |
|
8 | 7 | a1i | |- ( A. x F/ y ph -> ( x = y -> ( ph <-> [ y / x ] ph ) ) ) |
9 | 1 3 4 6 8 | cbv2 | |- ( A. x F/ y ph -> ( A. x ph <-> A. y [ y / x ] ph ) ) |