Metamath Proof Explorer


Theorem wl-sb8t

Description: Substitution of variable in universal quantifier. Closed form of sb8 . (Contributed by Wolf Lammen, 27-Jul-2019)

Ref Expression
Assertion wl-sb8t
|- ( A. x F/ y ph -> ( A. x ph <-> A. y [ y / x ] ph ) )

Proof

Step Hyp Ref Expression
1 nfa1
 |-  F/ x A. x F/ y ph
2 nfnf1
 |-  F/ y F/ y ph
3 2 nfal
 |-  F/ y A. x F/ y ph
4 sp
 |-  ( A. x F/ y ph -> F/ y ph )
5 wl-nfs1t
 |-  ( F/ y ph -> F/ x [ y / x ] ph )
6 5 sps
 |-  ( A. x F/ y ph -> F/ x [ y / x ] ph )
7 sbequ12
 |-  ( x = y -> ( ph <-> [ y / x ] ph ) )
8 7 a1i
 |-  ( A. x F/ y ph -> ( x = y -> ( ph <-> [ y / x ] ph ) ) )
9 1 3 4 6 8 cbv2
 |-  ( A. x F/ y ph -> ( A. x ph <-> A. y [ y / x ] ph ) )