Step |
Hyp |
Ref |
Expression |
1 |
|
nfnbi |
⊢ ( Ⅎ 𝑦 𝜑 ↔ Ⅎ 𝑦 ¬ 𝜑 ) |
2 |
1
|
albii |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 ↔ ∀ 𝑥 Ⅎ 𝑦 ¬ 𝜑 ) |
3 |
|
wl-sb8t |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 ¬ 𝜑 → ( ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
4 |
2 3
|
sylbi |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
5 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) |
6 |
|
sbn |
⊢ ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑦 [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ∀ 𝑦 ¬ [ 𝑦 / 𝑥 ] 𝜑 ) |
8 |
|
alnex |
⊢ ( ∀ 𝑦 ¬ [ 𝑦 / 𝑥 ] 𝜑 ↔ ¬ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
9 |
7 8
|
bitri |
⊢ ( ∀ 𝑦 [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
10 |
4 5 9
|
3bitr3g |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ¬ ∃ 𝑥 𝜑 ↔ ¬ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
11 |
10
|
con4bid |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |