Description: Closed form of sbhb . Characterizing the expression ph -> A. x ph using a substitution expression. (Contributed by Wolf Lammen, 28-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-sbhbt | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑦 ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-sb8t | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 2 | 1 | imbi2d | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( 𝜑 → ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 3 | 19.21t | ⊢ ( Ⅎ 𝑦 𝜑 → ( ∀ 𝑦 ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜑 → ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) ) | |
| 4 | 3 | sps | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∀ 𝑦 ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜑 → ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 5 | 2 4 | bitr4d | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑦 ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |