Metamath Proof Explorer


Theorem wl-sbhbt

Description: Closed form of sbhb . Characterizing the expression ph -> A. x ph using a substitution expression. (Contributed by Wolf Lammen, 28-Jul-2019)

Ref Expression
Assertion wl-sbhbt ( ∀ 𝑥𝑦 𝜑 → ( ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑦 ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 wl-sb8t ( ∀ 𝑥𝑦 𝜑 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )
2 1 imbi2d ( ∀ 𝑥𝑦 𝜑 → ( ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( 𝜑 → ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) )
3 19.21t ( Ⅎ 𝑦 𝜑 → ( ∀ 𝑦 ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜑 → ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) )
4 3 sps ( ∀ 𝑥𝑦 𝜑 → ( ∀ 𝑦 ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜑 → ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) )
5 2 4 bitr4d ( ∀ 𝑥𝑦 𝜑 → ( ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑦 ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) )