Description: Two ways expressing that x is effectively not free in ph . Simplified version of sbnf2 . Note: This theorem shows that sbnf2 has unnecessary distinct variable constraints. (Contributed by Wolf Lammen, 28-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-sbnf1 | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nf5 | ⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) | |
| 2 | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 Ⅎ 𝑦 𝜑 | |
| 3 | wl-sbhbt | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑦 ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) | |
| 4 | 2 3 | albid | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) | 
| 5 | 1 4 | bitrid | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |