Description: Two ways expressing that x is effectively not free in ph . Simplified version of sbnf2 . Note: This theorem shows that sbnf2 has unnecessary distinct variable constraints. (Contributed by Wolf Lammen, 28-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-sbnf1 | |- ( A. x F/ y ph -> ( F/ x ph <-> A. x A. y ( ph -> [ y / x ] ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5 | |- ( F/ x ph <-> A. x ( ph -> A. x ph ) ) |
|
| 2 | nfa1 | |- F/ x A. x F/ y ph |
|
| 3 | wl-sbhbt | |- ( A. x F/ y ph -> ( ( ph -> A. x ph ) <-> A. y ( ph -> [ y / x ] ph ) ) ) |
|
| 4 | 2 3 | albid | |- ( A. x F/ y ph -> ( A. x ( ph -> A. x ph ) <-> A. x A. y ( ph -> [ y / x ] ph ) ) ) |
| 5 | 1 4 | bitrid | |- ( A. x F/ y ph -> ( F/ x ph <-> A. x A. y ( ph -> [ y / x ] ph ) ) ) |