Metamath Proof Explorer


Theorem wl-sbnf1

Description: Two ways expressing that x is effectively not free in ph . Simplified version of sbnf2 . Note: This theorem shows that sbnf2 has unnecessary distinct variable constraints. (Contributed by Wolf Lammen, 28-Jul-2019)

Ref Expression
Assertion wl-sbnf1
|- ( A. x F/ y ph -> ( F/ x ph <-> A. x A. y ( ph -> [ y / x ] ph ) ) )

Proof

Step Hyp Ref Expression
1 nf5
 |-  ( F/ x ph <-> A. x ( ph -> A. x ph ) )
2 nfa1
 |-  F/ x A. x F/ y ph
3 wl-sbhbt
 |-  ( A. x F/ y ph -> ( ( ph -> A. x ph ) <-> A. y ( ph -> [ y / x ] ph ) ) )
4 2 3 albid
 |-  ( A. x F/ y ph -> ( A. x ( ph -> A. x ph ) <-> A. x A. y ( ph -> [ y / x ] ph ) ) )
5 1 4 syl5bb
 |-  ( A. x F/ y ph -> ( F/ x ph <-> A. x A. y ( ph -> [ y / x ] ph ) ) )