Metamath Proof Explorer


Theorem wl-sbid2ft

Description: A more general version of sbid2vw . (Contributed by Wolf Lammen, 14-May-2019)

Ref Expression
Assertion wl-sbid2ft ( Ⅎ 𝑥 𝜑 → ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑𝜑 ) )

Proof

Step Hyp Ref Expression
1 sb6 ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → [ 𝑥 / 𝑦 ] 𝜑 ) )
2 nfnf1 𝑥𝑥 𝜑
3 id ( Ⅎ 𝑥 𝜑 → Ⅎ 𝑥 𝜑 )
4 sbequ12r ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑𝜑 ) )
5 4 a1i ( Ⅎ 𝑥 𝜑 → ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑𝜑 ) ) )
6 2 3 5 wl-equsaldv ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → [ 𝑥 / 𝑦 ] 𝜑 ) ↔ 𝜑 ) )
7 1 6 bitrid ( Ⅎ 𝑥 𝜑 → ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑𝜑 ) )