Description: A more general version of sbid2vw . (Contributed by Wolf Lammen, 14-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-sbid2ft | ⊢ ( Ⅎ 𝑥 𝜑 → ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 | ⊢ ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → [ 𝑥 / 𝑦 ] 𝜑 ) ) | |
2 | nfnf1 | ⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝜑 | |
3 | id | ⊢ ( Ⅎ 𝑥 𝜑 → Ⅎ 𝑥 𝜑 ) | |
4 | sbequ12r | ⊢ ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) | |
5 | 4 | a1i | ⊢ ( Ⅎ 𝑥 𝜑 → ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) ) |
6 | 2 3 5 | wl-equsaldv | ⊢ ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → [ 𝑥 / 𝑦 ] 𝜑 ) ↔ 𝜑 ) ) |
7 | 1 6 | bitrid | ⊢ ( Ⅎ 𝑥 𝜑 → ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) |