Metamath Proof Explorer


Theorem wl-sbid2ft

Description: A more general version of sbid2vw . (Contributed by Wolf Lammen, 14-May-2019)

Ref Expression
Assertion wl-sbid2ft
|- ( F/ x ph -> ( [ y / x ] [ x / y ] ph <-> ph ) )

Proof

Step Hyp Ref Expression
1 sb6
 |-  ( [ y / x ] [ x / y ] ph <-> A. x ( x = y -> [ x / y ] ph ) )
2 nfnf1
 |-  F/ x F/ x ph
3 id
 |-  ( F/ x ph -> F/ x ph )
4 sbequ12r
 |-  ( x = y -> ( [ x / y ] ph <-> ph ) )
5 4 a1i
 |-  ( F/ x ph -> ( x = y -> ( [ x / y ] ph <-> ph ) ) )
6 2 3 5 wl-equsaldv
 |-  ( F/ x ph -> ( A. x ( x = y -> [ x / y ] ph ) <-> ph ) )
7 1 6 bitrid
 |-  ( F/ x ph -> ( [ y / x ] [ x / y ] ph <-> ph ) )