Description: A more general version of sbid2vw . (Contributed by Wolf Lammen, 14-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-sbid2ft | |- ( F/ x ph -> ( [ y / x ] [ x / y ] ph <-> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 | |- ( [ y / x ] [ x / y ] ph <-> A. x ( x = y -> [ x / y ] ph ) ) |
|
2 | nfnf1 | |- F/ x F/ x ph |
|
3 | id | |- ( F/ x ph -> F/ x ph ) |
|
4 | sbequ12r | |- ( x = y -> ( [ x / y ] ph <-> ph ) ) |
|
5 | 4 | a1i | |- ( F/ x ph -> ( x = y -> ( [ x / y ] ph <-> ph ) ) ) |
6 | 2 3 5 | wl-equsaldv | |- ( F/ x ph -> ( A. x ( x = y -> [ x / y ] ph ) <-> ph ) ) |
7 | 1 6 | bitrid | |- ( F/ x ph -> ( [ y / x ] [ x / y ] ph <-> ph ) ) |