Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Wolf Lammen
Other stuff
wl-sbid2ft
Next ⟩
wl-cbvalsbi
Metamath Proof Explorer
Ascii
Unicode
Theorem
wl-sbid2ft
Description:
A more general version of
sbid2vw
.
(Contributed by
Wolf Lammen
, 14-May-2019)
Ref
Expression
Assertion
wl-sbid2ft
⊢
Ⅎ
x
φ
→
y
x
x
y
φ
↔
φ
Proof
Step
Hyp
Ref
Expression
1
sb6
⊢
y
x
x
y
φ
↔
∀
x
x
=
y
→
x
y
φ
2
nfnf1
⊢
Ⅎ
x
Ⅎ
x
φ
3
id
⊢
Ⅎ
x
φ
→
Ⅎ
x
φ
4
sbequ12r
⊢
x
=
y
→
x
y
φ
↔
φ
5
4
a1i
⊢
Ⅎ
x
φ
→
x
=
y
→
x
y
φ
↔
φ
6
2
3
5
wl-equsaldv
⊢
Ⅎ
x
φ
→
∀
x
x
=
y
→
x
y
φ
↔
φ
7
1
6
bitrid
⊢
Ⅎ
x
φ
→
y
x
x
y
φ
↔
φ