Description: Substitution with a variable not free in antecedent affects only the consequent. Closed form of sbrim . (Contributed by Wolf Lammen, 26-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-sblimt | ⊢ ( Ⅎ 𝑥 𝜓 → ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbim | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 2 | sbft | ⊢ ( Ⅎ 𝑥 𝜓 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ 𝜓 ) ) | |
| 3 | 2 | imbi2d | ⊢ ( Ⅎ 𝑥 𝜓 → ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → 𝜓 ) ) ) |
| 4 | 1 3 | bitrid | ⊢ ( Ⅎ 𝑥 𝜓 → ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → 𝜓 ) ) ) |