Metamath Proof Explorer


Theorem wl-sblimt

Description: Substitution with a variable not free in antecedent affects only the consequent. Closed form of sbrim . (Contributed by Wolf Lammen, 26-Jul-2019)

Ref Expression
Assertion wl-sblimt
|- ( F/ x ps -> ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 sbim
 |-  ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> [ y / x ] ps ) )
2 sbft
 |-  ( F/ x ps -> ( [ y / x ] ps <-> ps ) )
3 2 imbi2d
 |-  ( F/ x ps -> ( ( [ y / x ] ph -> [ y / x ] ps ) <-> ( [ y / x ] ph -> ps ) ) )
4 1 3 syl5bb
 |-  ( F/ x ps -> ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> ps ) ) )