Description: Substitution with a variable not free in antecedent affects only the consequent. Closed form of sbrim . (Contributed by Wolf Lammen, 26-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-sbrimt | ⊢ ( Ⅎ 𝑥 𝜑 → ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbim | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
2 | sbft | ⊢ ( Ⅎ 𝑥 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) | |
3 | 2 | imbi1d | ⊢ ( Ⅎ 𝑥 𝜑 → ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
4 | 1 3 | syl5bb | ⊢ ( Ⅎ 𝑥 𝜑 → ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |