Description: Substitution with a variable not free in antecedent affects only the consequent. Closed form of sbrim . (Contributed by Wolf Lammen, 26-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-sbrimt | |- ( F/ x ph -> ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbim | |- ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> [ y / x ] ps ) ) |
|
| 2 | sbft | |- ( F/ x ph -> ( [ y / x ] ph <-> ph ) ) |
|
| 3 | 2 | imbi1d | |- ( F/ x ph -> ( ( [ y / x ] ph -> [ y / x ] ps ) <-> ( ph -> [ y / x ] ps ) ) ) |
| 4 | 1 3 | bitrid | |- ( F/ x ph -> ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) ) ) |