Metamath Proof Explorer


Theorem wlimss

Description: The class of limit points is a subclass of the base class. (Contributed by Scott Fenton, 16-Jun-2018)

Ref Expression
Assertion wlimss WLim ( 𝑅 , 𝐴 ) ⊆ 𝐴

Proof

Step Hyp Ref Expression
1 df-wlim WLim ( 𝑅 , 𝐴 ) = { 𝑥𝐴 ∣ ( 𝑥 ≠ inf ( 𝐴 , 𝐴 , 𝑅 ) ∧ 𝑥 = sup ( Pred ( 𝑅 , 𝐴 , 𝑥 ) , 𝐴 , 𝑅 ) ) }
2 1 ssrab3 WLim ( 𝑅 , 𝐴 ) ⊆ 𝐴