Metamath Proof Explorer


Theorem wlimss

Description: The class of limit points is a subclass of the base class. (Contributed by Scott Fenton, 16-Jun-2018)

Ref Expression
Assertion wlimss
|- WLim ( R , A ) C_ A

Proof

Step Hyp Ref Expression
1 df-wlim
 |-  WLim ( R , A ) = { x e. A | ( x =/= inf ( A , A , R ) /\ x = sup ( Pred ( R , A , x ) , A , R ) ) }
2 1 ssrab3
 |-  WLim ( R , A ) C_ A