Metamath Proof Explorer


Theorem wunop

Description: A weak universe is closed under ordered pairs. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1 ( 𝜑𝑈 ∈ WUni )
wunop.2 ( 𝜑𝐴𝑈 )
wunop.3 ( 𝜑𝐵𝑈 )
Assertion wunop ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 wun0.1 ( 𝜑𝑈 ∈ WUni )
2 wunop.2 ( 𝜑𝐴𝑈 )
3 wunop.3 ( 𝜑𝐵𝑈 )
4 dfopg ( ( 𝐴𝑈𝐵𝑈 ) → ⟨ 𝐴 , 𝐵 ⟩ = { { 𝐴 } , { 𝐴 , 𝐵 } } )
5 2 3 4 syl2anc ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ = { { 𝐴 } , { 𝐴 , 𝐵 } } )
6 1 2 wunsn ( 𝜑 → { 𝐴 } ∈ 𝑈 )
7 1 2 3 wunpr ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝑈 )
8 1 6 7 wunpr ( 𝜑 → { { 𝐴 } , { 𝐴 , 𝐵 } } ∈ 𝑈 )
9 5 8 eqeltrd ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑈 )