| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlknllvtx.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wwlknbp1 | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 3 |  | wwlknvtx | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ∀ 𝑥  ∈  ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑥 )  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 4 |  | 0elfz | ⊢ ( 𝑁  ∈  ℕ0  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑥  =  0  →  ( 𝑊 ‘ 𝑥 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( 𝑥  =  0  →  ( ( 𝑊 ‘ 𝑥 )  ∈  ( Vtx ‘ 𝐺 )  ↔  ( 𝑊 ‘ 0 )  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  =  0 )  →  ( ( 𝑊 ‘ 𝑥 )  ∈  ( Vtx ‘ 𝐺 )  ↔  ( 𝑊 ‘ 0 )  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 8 | 4 7 | rspcdv | ⊢ ( 𝑁  ∈  ℕ0  →  ( ∀ 𝑥  ∈  ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑥 )  ∈  ( Vtx ‘ 𝐺 )  →  ( 𝑊 ‘ 0 )  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 9 |  | nn0fz0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 10 | 9 | biimpi | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑥  =  𝑁  →  ( 𝑊 ‘ 𝑥 )  =  ( 𝑊 ‘ 𝑁 ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝑊 ‘ 𝑥 )  ∈  ( Vtx ‘ 𝐺 )  ↔  ( 𝑊 ‘ 𝑁 )  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  =  𝑁 )  →  ( ( 𝑊 ‘ 𝑥 )  ∈  ( Vtx ‘ 𝐺 )  ↔  ( 𝑊 ‘ 𝑁 )  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 14 | 10 13 | rspcdv | ⊢ ( 𝑁  ∈  ℕ0  →  ( ∀ 𝑥  ∈  ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑥 )  ∈  ( Vtx ‘ 𝐺 )  →  ( 𝑊 ‘ 𝑁 )  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 15 | 8 14 | jcad | ⊢ ( 𝑁  ∈  ℕ0  →  ( ∀ 𝑥  ∈  ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑥 )  ∈  ( Vtx ‘ 𝐺 )  →  ( ( 𝑊 ‘ 0 )  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝑊 ‘ 𝑁 )  ∈  ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( ∀ 𝑥  ∈  ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑥 )  ∈  ( Vtx ‘ 𝐺 )  →  ( ( 𝑊 ‘ 0 )  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝑊 ‘ 𝑁 )  ∈  ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 17 | 2 3 16 | sylc | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( 𝑊 ‘ 0 )  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝑊 ‘ 𝑁 )  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 18 | 1 | eleq2i | ⊢ ( ( 𝑊 ‘ 0 )  ∈  𝑉  ↔  ( 𝑊 ‘ 0 )  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 19 | 1 | eleq2i | ⊢ ( ( 𝑊 ‘ 𝑁 )  ∈  𝑉  ↔  ( 𝑊 ‘ 𝑁 )  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 20 | 18 19 | anbi12i | ⊢ ( ( ( 𝑊 ‘ 0 )  ∈  𝑉  ∧  ( 𝑊 ‘ 𝑁 )  ∈  𝑉 )  ↔  ( ( 𝑊 ‘ 0 )  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝑊 ‘ 𝑁 )  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 21 | 17 20 | sylibr | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( 𝑊 ‘ 0 )  ∈  𝑉  ∧  ( 𝑊 ‘ 𝑁 )  ∈  𝑉 ) ) |