Metamath Proof Explorer


Theorem xkotop

Description: The compact-open topology is a topology. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion xkotop ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆ko 𝑅 ) ∈ Top )

Proof

Step Hyp Ref Expression
1 eqid 𝑅 = 𝑅
2 eqid { 𝑥 ∈ 𝒫 𝑅 ∣ ( 𝑅t 𝑥 ) ∈ Comp } = { 𝑥 ∈ 𝒫 𝑅 ∣ ( 𝑅t 𝑥 ) ∈ Comp }
3 eqid ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑅 ∣ ( 𝑅t 𝑥 ) ∈ Comp } , 𝑣𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) = ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑅 ∣ ( 𝑅t 𝑥 ) ∈ Comp } , 𝑣𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } )
4 1 2 3 xkoval ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑅 ∣ ( 𝑅t 𝑥 ) ∈ Comp } , 𝑣𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) ) ) )
5 fibas ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑅 ∣ ( 𝑅t 𝑥 ) ∈ Comp } , 𝑣𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) ) ∈ TopBases
6 tgcl ( ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑅 ∣ ( 𝑅t 𝑥 ) ∈ Comp } , 𝑣𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) ) ∈ TopBases → ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑅 ∣ ( 𝑅t 𝑥 ) ∈ Comp } , 𝑣𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) ) ) ∈ Top )
7 5 6 ax-mp ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑅 ∣ ( 𝑅t 𝑥 ) ∈ Comp } , 𝑣𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) ) ) ∈ Top
8 4 7 eqeltrdi ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆ko 𝑅 ) ∈ Top )