Metamath Proof Explorer


Theorem xkotop

Description: The compact-open topology is a topology. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion xkotop RTopSTopS^koRTop

Proof

Step Hyp Ref Expression
1 eqid R=R
2 eqid x𝒫R|R𝑡xComp=x𝒫R|R𝑡xComp
3 eqid kx𝒫R|R𝑡xComp,vSfRCnS|fkv=kx𝒫R|R𝑡xComp,vSfRCnS|fkv
4 1 2 3 xkoval RTopSTopS^koR=topGenfirankx𝒫R|R𝑡xComp,vSfRCnS|fkv
5 fibas firankx𝒫R|R𝑡xComp,vSfRCnS|fkvTopBases
6 tgcl firankx𝒫R|R𝑡xComp,vSfRCnS|fkvTopBasestopGenfirankx𝒫R|R𝑡xComp,vSfRCnS|fkvTop
7 5 6 ax-mp topGenfirankx𝒫R|R𝑡xComp,vSfRCnS|fkvTop
8 4 7 eqeltrdi RTopSTopS^koRTop